Background: Computer-aided data validation enhanced by centralized monitoring algorithms is a more powerful tool for data cleaning compared to manual source document verification (SDV). This fact led to the growing popularity of risk-based monitoring (RBM) coupled with reduced SDV and centralized statistical surveillance. Since RBM models are new and immature, there is a lack of consensus on practical implementation.
View Article and Find Full Text PDFBackground: Data quality within the clinical research enterprise can be defined as the absence of errors that matter and whether the data are fit for purpose. This concept, proposed by the Clinical Trials Transformation Initiative, resulted from a culmination of collaboration with industry, academia, patient advocates, and regulators, and it emphasizes the presence of a hierarchy of error types, resulting in a more efficient and modern data-cleaning paradigm. While source document verification (SDV) is commonly used as a quality control method in clinical research, it is disproportionately expensive and often leads to questionable benefits.
View Article and Find Full Text PDF