Dysregulated transcription due to disruption in histone lysine methylation dynamics is an established contributor to tumorigenesis. However, whether analogous pathologic epigenetic mechanisms act directly on the ribosome to advance oncogenesis is unclear. Here we find that trimethylation of the core ribosomal protein L40 (rpL40) at lysine 22 (rpL40K22me3) by the lysine methyltransferase SMYD5 regulates mRNA translation output to promote malignant progression of gastric adenocarcinoma (GAC) with lethal peritoneal ascites.
View Article and Find Full Text PDFeEF2 post-translational modifications (PTMs) can profoundly affect mRNA translation dynamics. However, the physiologic function of eEF2K525 trimethylation (eEF2K525me3), a PTM catalyzed by the enzyme FAM86A, is unknown. Here, we find that FAM86A methylation of eEF2 regulates nascent elongation to promote protein synthesis and lung adenocarcinoma (LUAD) pathogenesis.
View Article and Find Full Text PDFFAM86A is a class I lysine methyltransferase (KMT) that generates trimethylation on the eukaryotic translation elongation factor 2 (EEF2) at Lys525. Publicly available data from The Cancer Dependency Map project indicate high dependence of hundreds of human cancer cell lines on FAM86A expression. This classifies FAM86A among numerous other KMTs as potential targets for future anticancer therapies.
View Article and Find Full Text PDFProtein synthesis is a fundamental step in gene expression, with modulation of mRNA translation at the elongation step emerging as an important regulatory node in shaping cellular proteomes. In this context, five distinct lysine methylation events on eukaryotic elongation factor 1A (eEF1A), a fundamental nonribosomal elongation factor, are proposed to influence mRNA translation elongation dynamics. However, a lack of affinity tools has hindered progress in fully understanding how eEF1A lysine methylation impacts protein synthesis.
View Article and Find Full Text PDFIncreased protein synthesis plays an etiologic role in diverse cancers. Here, we demonstrate that METTL13 (methyltransferase-like 13) dimethylation of eEF1A (eukaryotic elongation factor 1A) lysine 55 (eEF1AK55me2) is utilized by Ras-driven cancers to increase translational output and promote tumorigenesis in vivo. METTL13-catalyzed eEF1A methylation increases eEF1A's intrinsic GTPase activity in vitro and protein production in cells.
View Article and Find Full Text PDFBacillithiol is a low-molecular weight thiol produced by many gram-positive organisms, including Staphylococcus aureus and Bacillus anthracis. It is the major thiol responsible for maintaining redox homeostasis and cellular detoxification, including inactivation of the antibiotic fosfomycin. The metal-dependent bacillithiol transferase BstA is likely involved in these sorts of detoxification processes, but the exact substrates and enzyme mechanism have not been identified.
View Article and Find Full Text PDF