Publications by authors named "Joel W Ager Iii"

The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates.

View Article and Find Full Text PDF

The III-V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III-V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III-V's on amorphous substrates, thus further expanding their utility for various applications.

View Article and Find Full Text PDF

The vibrational properties of mesoporous silica (SBA-15) were investigated by deep ultraviolet (UV) Raman and infrared spectroscopies with and without the presence of platinum nanoparticles in the mesopores that were incorporated by sonication. Raman and IR spectral line assignments were made by comparison to amorphous silicas. This procedure permitted identification of vibrations of longitudinal (LO) and transverse (TO) optical lattice modes, the presence of Si-OH, and vibrational modes associated with the presence of three-, four-, and six-membered siloxane rings.

View Article and Find Full Text PDF