Publications by authors named "Joel Tuberosa"

Rodents perceive pheromones via vomeronasal receptors encoded by highly evolutionarily dynamic Vr and Fpr gene superfamilies. We report here that high numbers of V1r pseudogenes are scattered in mammalian genomes, contrasting with the clustered organization of functional V1r and Fpr genes. We also found that V1r pseudogenes are more likely to be expressed when located in a functional V1r gene cluster than when isolated.

View Article and Find Full Text PDF

In mammals, chemoperception relies on a diverse set of neuronal sensors able to detect chemicals present in the environment, and to adapt to various levels of stimulation. The contribution of endogenous and external factors to these neuronal identities remains to be determined. Taking advantage of the parallel coding lines present in the olfactory system, we explored the potential variations of neuronal identities before and after olfactory experience.

View Article and Find Full Text PDF

Reports indicate an association between COVID-19 and anosmia, as well as the presence of SARS-CoV-2 virions in the olfactory bulb. To test whether the olfactory neuroepithelium may represent a target of the virus, we generated RNA-seq libraries from human olfactory neuroepithelia, in which we found substantial expression of the genes coding for the virus receptor angiotensin-converting enzyme-2 (ACE2) and for the virus internalization enhancer TMPRSS2. We analyzed a human olfactory single-cell RNA-seq dataset and determined that sustentacular cells, which maintain the integrity of olfactory sensory neurons, express and .

View Article and Find Full Text PDF

Changes in gene expression patterns represent an essential source of evolutionary innovation. A striking case of neofunctionalization is the acquisition of neuronal specificity by immune formyl peptide receptors (Fprs). In mammals, Fprs are expressed by immune cells, where they detect pathogenic and inflammatory chemical cues.

View Article and Find Full Text PDF

In mammals, olfactory perception is based on the combinatorial activation of G protein-coupled receptors. Identifying the full repertoire of receptors activated by a given odorant in vivo, a quest that has been hampered for over 20 years by technical difficulties, would represent an important step in deciphering the rules governing chemoperception. We found that odorants induced a fast and reversible concentration-dependent decrease in the transcription of genes corresponding to activated receptors in intact mice.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: