Much progress has been made in understanding how the brain combines signals from the two eyes. However, most of this work has involved achromatic (black and white) stimuli, and it is not clear if the same processes apply in color-sensitive pathways. In our first experiment, we measured contrast discrimination ("dipper") functions for four key ocular configurations (monocular, binocular, half-binocular, and dichoptic), for achromatic, isoluminant L-M and isoluminant S-(L+M) sine-wave grating stimuli (L: long-, M: medium-, S: short-wavelength).
View Article and Find Full Text PDFHow does the human brain combine information across the eyes? It has been known for many years that cortical normalization mechanisms implement 'ocularity invariance': equalizing neural responses to spatial patterns presented either monocularly or binocularly. Here, we used a novel combination of electrophysiology, psychophysics, pupillometry, and computational modeling to ask whether this invariance also holds for flickering luminance stimuli with no spatial contrast. We find dramatic violations of ocularity invariance for these stimuli, both in the cortex and also in the subcortical pathways that govern pupil diameter.
View Article and Find Full Text PDFThe normal human retina contains several classes of photosensitive cell-rods for low-light vision, three cone classes for daylight vision, and intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin for non-image-forming functions, including pupil control, melatonin suppression, and circadian photoentrainment. The spectral sensitivities of the photoreceptors overlap significantly, which means that most lights will stimulate all photoreceptors to varying degrees. The method of silent substitution is a powerful tool for stimulating individual photoreceptor classes selectively and has found much use in research and clinical settings.
View Article and Find Full Text PDFBaseline and task-evoked pupil measures are known to reflect the activity of the nervous system's central arousal mechanisms. With the increasing availability, affordability and flexibility of video-based eye tracking hardware, these measures may one day find practical application in real-time biobehavioural monitoring systems to assess performance or fitness for duty in tasks requiring vigilant attention. But real-world vigilance tasks are predominantly visual in their nature and most research in this area has taken place in the auditory domain.
View Article and Find Full Text PDFWe introduce PyPlr-a versatile, integrated system of hardware and software to support a broad spectrum of research applications concerning the human pupillary light reflex (PLR). PyPlr is a custom Python library for integrating a research-grade video-based eye-tracker system with a light source and streamlining stimulus design, optimisation and delivery, device synchronisation, and extraction, cleaning, and analysis of pupil data. We additionally describe how full-field, homogenous stimulation of the retina can be realised with a low-cost integrating sphere that serves as an alternative to a more complex Maxwellian view setup.
View Article and Find Full Text PDFPupil size changes during a visual search may reflect cognitive processes, such as effort and memory accumulation, but methodological confounds and the general lack of literature in this area leave the reliability of findings open to question. We used a novel synthesis of experimental methods and averaging techniques to explore how cognitive processing unfolds during free-viewing visual search for multiple targets. Twenty-seven participants completed 152 searches across two separate 1-hour sessions.
View Article and Find Full Text PDF