Publications by authors named "Joel Richardson"

Mouse Genome Informatics (MGI) is a federation of expertly curated information resources designed to support experimental and computational investigations into genetic and genomic aspects of human biology and disease using the laboratory mouse as a model system. The Mouse Genome Database (MGD) and the Gene Expression Database (GXD) are core MGI databases that share data and system architecture. MGI serves as the central community resource of integrated information about mouse genome features, variation, expression, gene function, phenotype, and human disease models acquired from peer-reviewed publications, author submissions, and major bioinformatics resources.

View Article and Find Full Text PDF

The laboratory mouse has served for decades as an informative animal model system for investigating the genetic and genomic basis of cancer in humans. Although thousands of mouse models have been generated, compiling and aggregating relevant data and knowledge about these models is hampered by a general lack of compliance, in the published literature, with nomenclature and annotation standards for genes, alleles, mouse strains and cancer types. The Mouse Models of Human Cancer database (MMHCdb) is an expertly curated, comprehensive knowledgebase of diverse types of mouse models of human cancer, including inbred mouse strains, genetically engineered mouse models, patient-derived xenografts, and mouse genetic diversity panels such as the Collaborative Cross.

View Article and Find Full Text PDF

The Mouse Genome Informatics (MGI) database system combines multiple expertly curated community data resources into a shared knowledge management ecosystem united by common metadata annotation standards. MGI's mission is to facilitate the use of the mouse as an experimental model for understanding the genetic and genomic basis of human health and disease. MGI is the authoritative source for mouse gene, allele, and strain nomenclature and is the primary source of mouse phenotype annotations, functional annotations, developmental gene expression information, and annotations of mouse models with human diseases.

View Article and Find Full Text PDF

The assembled and annotated genomes for 16 inbred mouse strains (Lilue et al., Nat Genet 50:1574-1583, 2018) and two wild-derived strains (CAROLI/EiJ and PAHARI/EiJ) (Thybert et al., Genome Res 28:448-459, 2018) are valuable resources for mouse genetics and comparative genomics.

View Article and Find Full Text PDF

Mental health staff may have limited exposure to emergencies associated with obsessive-compulsive disorder (OCD) during postgraduate training. The first time they encounter a person in the midst of severe obsessions, or one who has compulsively self-harmed in response to such obsessions, might be when working on call covering the emergency department. This educational article presents the lived experience of one of the authors as a clinical scenario.

View Article and Find Full Text PDF

The Gene Expression Database (GXD), an extensive community resource of curated expression information for the mouse, has developed an RNA-Seq and Microarray Experiment Search (http://www.informatics.jax.

View Article and Find Full Text PDF

Visualizing regions of conserved synteny between two genomes is supported by numerous software applications. However, none of the current applications allow researchers to select genome features to display or highlight in blocks of synteny based on the annotated biological properties of the features (e.g.

View Article and Find Full Text PDF

The Mouse Genome Database (MGD; http://www.informatics.jax.

View Article and Find Full Text PDF

The mouse Gene Expression Database (GXD) is an extensive, well-curated community resource freely available at www.informatics.jax.

View Article and Find Full Text PDF

Model organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases.

View Article and Find Full Text PDF

Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology.

View Article and Find Full Text PDF

The Mouse Genome Database (MGD; http://www.informatics.jax.

View Article and Find Full Text PDF

The availability of and access to quality genetically defined, health-status known mouse resources is critical for biomedical research. By ensuring that mice used in research experiments are biologically, genetically, and health-status equivalent, we enable knowledge transfer, hypothesis building based on multiple data streams, and experimental reproducibility based on common mouse resources (reagents). Major repositories for mouse resources have developed over time and each has significant unique resources to offer.

View Article and Find Full Text PDF

From its inception in 1989, the mission of the Mouse Genome Informatics (MGI) resource remains to integrate genetic, genomic, and biological data about the laboratory mouse to facilitate the study of human health and disease. This mission is ever more feasible as the revolution in genetics knowledge, the ability to sequence genomes, and the ability to specifically manipulate mammalian genomes are now at our fingertips. Through major paradigm shifts in biological research and computer technologies, MGI has adapted and evolved to become an integral part of the larger global bioinformatics infrastructure and honed its ability to provide authoritative reference datasets used and incorporated by many other established bioinformatics resources.

View Article and Find Full Text PDF

The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism.

View Article and Find Full Text PDF

InterMine is a data integration warehouse and analysis software system developed for large and complex biological data sets. Designed for integrative analysis, it can be accessed through a user-friendly web interface. For bioinformaticians, extensive web services as well as programming interfaces for most common scripting languages support access to all features.

View Article and Find Full Text PDF

Experiments that employ genome scale technology platforms frequently result in lists of tens to thousands of genes with potential significance to a specific biological process or disease. Searching for biologically relevant connections among the genes or gene products in these lists is a common data analysis task. We have implemented a software application for uncovering functional themes in sets of genes based on their annotations to bio-ontologies, such as the gene ontology and the mammalian phenotype ontology.

View Article and Find Full Text PDF

The Gene Expression Database (GXD) is an extensive and freely available community resource of mouse developmental expression data. GXD curates and integrates expression data from the literature, via electronic data submissions, and by collaborations with large-scale projects. As an integral component of the Mouse Genome Informatics Resource, GXD combines expression data with genetic, functional, phenotypic, and disease-related data, and provides tools for the research community to search for and analyze expression data in this larger context.

View Article and Find Full Text PDF