Quantitative Trait Loci (QTL) mapping has been thoroughly used in peanut genetics and breeding in spite of the narrow genetic diversity and the segmental tetraploid nature of the cultivated species. QTL mapping is helpful for identifying the genomic regions that contribute to traits, for estimating the extent of variation and the genetic action (i.e.
View Article and Find Full Text PDFPeanuts ( L.) are an allotetraploid grain legume mainly cultivated by poor farmers in Africa, in degraded soil and with low input systems. Further understanding nodulation genetic mechanisms could be a relevant option to facilitate the improvement of yield and lift up soil without synthetic fertilizers.
View Article and Find Full Text PDFFruit and seed size are important yield component traits that have been selected during crop domestication. In previous studies, Advanced Backcross Quantitative Trait Loci (AB-QTL) and Chromosome Segment Substitution Line (CSSL) populations were developed in peanut by crossing the cultivated variety Fleur11 and a synthetic wild allotetraploid (Arachis. ipaensis × Arachis.
View Article and Find Full Text PDFCultivated peanut and synthetics are allotetraploids (2 = 4 = 40) with two homeologous sets of chromosomes. Meiosis in allotetraploid peanut is generally thought to show diploid-like behavior. However, a recent study pointed out the occurrence of recombination between homeologous chromosomes, especially when synthetic allotetraploids are used, challenging the view of disomic inheritance in peanut.
View Article and Find Full Text PDF