Publications by authors named "Joel P Gallagher"

Cocaine-cue associations induce synaptic plasticity with long lasting molecular and cellular changes in the amygdala, a site crucial for cue-associated memory mechanisms. The underlying neuroadaptations can include marked alterations in signaling via dopamine (DA) receptors (DRs) and metabotropic glutamate (Glu) receptors (mGluRs). Previously, we reported that DR antagonists blocked forms of synaptic plasticity in amygdala slices of Sprague-Dawley rats withdrawn from repeated cocaine administration.

View Article and Find Full Text PDF

Cocaine relapse can occur when cocaine-associated environmental cues induce craving. Conditioned place preference (CPP) is a behavioral paradigm modeling the association between cocaine exposure and environmental cues. The amygdala is involved in cocaine cue associations with the basolateral amygdala (BLA) and central amygdala (CeA) acting differentially in cue-induced relapse.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) in the amygdala is involved in stress responses. Moreover, dopaminergic neurotransmission in the brain reward system including the amygdala plays a significant role in the pathology of cocaine addiction. The present study analysed CRF-induced synaptic plasticity, its pharmacological sensitivity and interactions with the dopamine (DA) system in the basolateral to lateral capsula central amygdala (lcCeA) pathway after a 2-week withdrawal from repeated cocaine administration.

View Article and Find Full Text PDF

Corticotropin-Releasing Hormone (CRH) or Corticotropin-Releasing Factor (CRF) and its family of related naturally occurring endogenous peptides and receptors are becoming recognized for their actions within central (CNS) and peripheral (PNS) nervous systems. It should be recognized that the term 'CRH' has been displaced by 'CRF' [Guillemin, R., 2005.

View Article and Find Full Text PDF

Basolateral amygdala (BLA) neurons provide a major excitatory input to medial prefrontal cortex (mPFC)-layer V pyramidal neurons. Under stressful conditions, commonly associated with chronic cocaine abuse, altered BLA-to-mPFC synaptic transmission could lead to defective emotional information processing and decision making within the mPFC and result in misguided and inappropriate behaviors. We examined the effects of cocaine administered chronically in vivo on EPSCs recorded from a putative BLA-mPFC pathway in vitro and their modulation by dopamine (DA), corticotropin-releasing factor (CRF), and their combination (DA plus CRF).

View Article and Find Full Text PDF

The amygdala is part of the brain reward circuitry that plays a role in cocaine-seeking and abstinence in animals and cocaine craving and relapse in humans. Cocaine-seeking is elicited by cocaine-associated cues, and the basolateral amygdala (BLA) and CeA are essential in forming and communicating drug-related associations that are thought to be critical in long-lasting relapse risk associated with drug addiction. Here we simulated a cue stimulus with high-frequency stimulation (HFS) of the BLA-CeA pathway to examine mechanisms that may contribute to drug-related associations.

View Article and Find Full Text PDF

The septum is a critical and integral component of the limbic brain that serves as a link between diverse brain structures while being necessary for human cognition and emotionality. A major anatomical component of the septum is designated as the medial septum/diagonal band of Broca complex (MS/DB). A primary focus of much research has been to investigate cholinergic neurons within the MS/DB, as these are the rodent brain's main source of acetylcholine to the cortex and hippocampus.

View Article and Find Full Text PDF

Cocaine addiction is an enduring, relapsing, behavioural disorder in which stressors reinstate cocaine-seeking even after prolonged abstinence. Evidence suggests that the 'anxiety-like' behaviour and stress associated with protracted withdrawal may be mediated by increased corticotropin-releasing factor (CRF) in the central nucleus of the amygdala (CeA), a part of the limbic circuitry engaged in the coding and transmission of stimulus-reward associations. In the present study we describe a long-lasting potentiation of glutamatergic transmission induced at lateral amygdala (LA)-to-CeA synapses by rat/human CRF.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF or CRH) and its family of related peptides have long been recognized as hypothalamic-pituitary-adrenal (HPA) axis peptides that function to regulate the release of other hormones, e.g., ACTH.

View Article and Find Full Text PDF

Electrophysiological recordings from identified synapses in CNS slice preparations in vitro provide important information regarding the connectivity of neuronal circuits and the underlying cellular mechanisms responsible for neuronal excitability and synaptic transmission. We present an anatomical, electrophysiological, and pharmacological characterization of a novel brain slice preparation (BLA-mPFC) to investigate basolateral amygdala synaptic input to rat layer V medial prefrontal cortex pyramidal neurons. A fluorescent tracer (DiI) unilaterally infused in vivo into the basolateral amygdala was used to detect amygdala efferent fibers innervating layer V of the prelimbic and infralimbic cortices within prefrontal cortex slices.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) and urocortin (Ucn I) are endogenous members among a family of CRF-related peptides that activate two different and synaptically localized G-protein-coupled receptors, CRF1 and CRF2. These peptides and their receptors have been implicated in stress responses and stress with cocaine abuse. In this study, we observed significant alterations in excitatory transmission and CRF-related peptide regulation of excitatory transmission in the lateral septum mediolateral nucleus (LSMLN) after chronic cocaine administration.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF)-related peptides serve as hormones and neuromodulators of the stress response and play a role in affective disorders. These peptides are known to alter complex behaviors and neuronal properties, but their receptor-mediated effects at CNS synapses are not well described. Here we show that excitatory glutamatergic transmission is modulated by two endogenous CRF-related peptide ligands, corticotropin-releasing factor [CRF rat/human (r/h)] and Urocortin I (Ucn I), within the central nucleus of the amygdala (CeA) and the lateral septum mediolateral nucleus (LSMLN).

View Article and Find Full Text PDF

The amygdala plays a critical role in fear conditioning, a model of emotional learning and cue-induced anxiety. In the lateral amygdala, fear conditioning is associated with an enduring increase in synaptic strength mediated through AMPA receptors and with a reduction in paired-pulse facilitation, reflecting an increased probability of neurotransmitter release. Here we show that NMDA-mediated transmission in the thalamic-to-lateral amygdala pathway is not facilitated after fear conditioning, although probability of transmitter release is enhanced.

View Article and Find Full Text PDF

Abnormalities in serotonin (5-HT), serotonin receptors, and serotonergic neurons have been reported in studies of brains from patients diagnosed clinically with depression. In this study, we examined a known cellular function of 5-HT(1A) receptor activation in dorsolateral septal nucleus (DLSN) neurons, namely, a concentration dependent 5-HT-induced outward current, and compared basic neuronal membrane properties and activities of DLSN neurons from two known genetic lines of rats. As compared to "control" rats (Flinders Resistant Line, FRL), DLSN neurons from Flinders Sensitive Line of rats (FSL) did not exhibit significant differences in resting membrane potential, membrane input resistance, or changes in typical spontaneous inhibitory or excitatory post-synaptic currents.

View Article and Find Full Text PDF