Background: Cryolipolysis nonsurgically targets and reduces subcutaneous fat through controlled cooling of skin and underlying fatty tissue. Although skin changes after cryolipolysis treatment have been observed clinically, the mechanisms by which these occur are not well understood.
Objectives: The aim of this study was to investigate the expression of heat shock protein 70 (HSP70) in the epidermal and dermal layers of human skin following cryolipolysis treatment.
Background: In addition to body contouring, there is anecdotal and clinical evidence of reduced laxity caused by skin tightening after cryolipolysis. However, it has not been established how cryolipolysis triggers dermal changes.
Objectives: The aim of this study was to investigate the fundamental mechanisms behind clinically observed dermal changes by molecular and immunohistochemistry (IHC) analytical methods.
Background And Objectives: A previous pre-clinical study on electromagnetic muscle stimulation (EMMS) suggested that fat cell apoptosis occurs following treatment in a porcine model. While EMMS can induce changes in muscle, the effect on fat tissue is not established. This clinical study sought to assess adipose tissue response to EMMS in comparison to cryolipolysis treatment.
View Article and Find Full Text PDFBackground And Objective: Radiofrequency currents are commonly used in dermatology to treat cutaneous and subcutaneous tissues by heating. The subcutaneous morphology of tissue consists of a fine, collagenous and fibrous septa network enveloping clusters of adipocyte cells. The architecture of this network, namely density and orientation of septa, varies among patients and, furthermore, it correlates with cellulite grading.
View Article and Find Full Text PDFBackground And Objectives: Radiofrequency (RF) energy exposure is a popular non-invasive method for generating heat within cutaneous and subcutaneous tissues. Subcutaneous fat consists of fine collagen fibrous septa meshed with clusters of adipocytes having distinct structural, electrical and thermal properties that affect the distribution and deposition of RF energy. The objectives of this work are to (i) determine the electric and thermal effects of the fibrous septa in the RF heating; (ii) investigate the RF heating of individual fat lobules enclosed by fibrous septa; and, (iii) discuss the clinical implications.
View Article and Find Full Text PDFA serious problem in emergency medicine is the correct evaluation of skin burn depth to make the appropriate choice of treatment. In clinical practice, there is no difficulty in classifying first- and third-degree burns correctly. However, differentiation between the IIa (superficial dermal) and IIb (deep dermal) wounds is problematic even for experienced practitioners.
View Article and Find Full Text PDF