Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, is an essential effector of B-cell receptor (BCR) signaling. Chronic activation of BTK-mediated BCR signaling is a hallmark of many hematological malignancies, which makes it an attractive therapeutic target. Pharmacological inhibition of BTK enzymatic function is now a well-proven strategy for the treatment of patients with these malignancies.
View Article and Find Full Text PDFBruton tyrosine kinase (BTK) is essential for B-cell receptor (BCR) signaling, a driver of chronic lymphocytic leukemia (CLL). Covalent inhibitors bind C481 in the active site of BTK and have become a preferred CLL therapy. Disease progression on covalent BTK inhibitors is commonly associated with C481 mutations.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2020
Inhibition of integrin α5β1 emerges as a novel therapeutic option to block transmission of contractile forces during asthma attack. We designed and synthesized novel inhibitors of integrin α5β1 by backbone replacement of known αvβ1 integrin inhibitors. These integrin α5β1 inhibitors also retain the nanomolar potency against αvβ1 integrin, which shows promise for developing dual integrin α5β1/αvβ1 inhibitor.
View Article and Find Full Text PDFOne small molecule inhibitor of αvβ1 integrin, , shows antifibrotic effects in multiple in vivo mouse models. Here we synthesized analogues and systematically investigate their structure-activity relationships (SAR) in αvβ1 integrin inhibition. -Phenylsulfonyl-l-homoproline analogues of maintained excellent potency against αvβ1 integrin while retaining good selectivity over other RGD integrins.
View Article and Find Full Text PDFA rational fluorine scan based on co-crystal structures was explored to increase the potency of a series of selective BTK inhibitors. While fluorine substitution on a saturated bicyclic ring system yields no apparent benefit, the same operation on an unsaturated bicyclic ring can increase HWB activity by up to 40-fold. Comparison of co-crystal structures of parent molecules and fluorinated counterparts revealed the importance of placing fluorine at the optimal position to achieve favorable interactions with protein side chains.
View Article and Find Full Text PDFStructure-based rational design and extensive structure-activity relationship studies led to the discovery of AMG 232 (1), a potent piperidinone inhibitor of the MDM2-p53 association, which is currently being evaluated in human clinical trials for the treatment of cancer. Further modifications of 1, including replacing the carboxylic acid with a 4-amidobenzoic acid, afforded AM-7209 (25), featuring improved potency (KD from ITC competition was 38 pM, SJSA-1 EdU IC50 = 1.6 nM), remarkable pharmacokinetic properties, and in vivo antitumor activity in both the SJSA-1 osteosarcoma xenograft model (ED50 = 2.
View Article and Find Full Text PDFStructure-based drug design was used to guide the optimization of a series of selective BTK inhibitors as potential treatments for Rheumatoid arthritis. Highlights include the introduction of a benzyl alcohol group and a fluorine substitution, each of which resulted in over 10-fold increase in activity. Concurrent optimization of drug-like properties led to compound 1 (RN486) ( J.
View Article and Find Full Text PDFWe previously reported the discovery of potent and selective morpholinone and piperidinone inhibitors of the MDM2-p53 interaction. These inhibitors have in common a carboxylic acid moiety that engages in an electrostatic interaction with MDM2-His96. Our continued search for potent and diverse inhibitors led to the discovery of novel replacements for these acids uncovering new interactions with the MDM2 protein.
View Article and Find Full Text PDFWe previously reported the discovery of AMG 232, a highly potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Our continued search for potent and diverse analogues led to the discovery of novel morpholinone MDM2 inhibitors. This change to a morpholinone core has a significant impact on both potency and metabolic stability compared to the piperidinone series.
View Article and Find Full Text PDFWe recently reported the discovery of AM-8553 (1), a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Continued research investigation of the N-alkyl substituent of this series, focused in particular on a previously underutilized interaction in a shallow cleft on the MDM2 surface, led to the discovery of a one-carbon tethered sulfone which gave rise to substantial improvements in biochemical and cellular potency. Further investigation produced AMG 232 (2), which is currently being evaluated in human clinical trials for the treatment of cancer.
View Article and Find Full Text PDFIn the past few years, there have been many advances in the efforts to cure patients with hepatitis C virus (HCV). The ultimate goal of these efforts is to develop a combination therapy consisting of only direct-antiviral agents (DAAs). In this paper, we discuss our efforts that led to the identification of a bicyclic template with potent activity against the NS5B polymerase, a critical enzyme on the life cycle of HCV.
View Article and Find Full Text PDFLearnings from previous Roche p38-selective inhibitors were applied to a new fragment hit, which was optimized to a potent, exquisitely selective preclinical lead with a good pharmacokinetic profile.
View Article and Find Full Text PDFThe development of a new series of p38α inhibitors resulted in the identification of two clinical candidates, one of which was advanced into a phase 2 clinical study for rheumatoid arthritis. The original lead, an lck inhibitor that also potently inhibited p38α, was a screening hit from our kinase inhibitor library. This manuscript describes the optimization of the lead to p38-selective examples with good pharmacokinetic properties.
View Article and Find Full Text PDFA novel series of (E)-1-((2-(1-methyl-1H-imidazol-5-yl) quinolin-4-yl) methylene) thiosemicarbazides was discovered as potent inhibitors of IKKβ. In this Letter we document our early efforts at optimization of the quinoline core, the imidazole and the semithiocarbazone moiety. Most potency gains came from substitution around the 6- and 7-positions of the quinoline ring.
View Article and Find Full Text PDFA novel series of (E)-1-((2-(1-methyl-1H-imidazol-5-yl) quinolin-4-yl) methylene) thiosemicarbazides was discovered as potent inhibitors of IKKβ. In this Letter we document our efforts at further optimization of this series, culminating in 2 with submicromolar potency in a HWB assay and efficacy in a CIA mouse model.
View Article and Find Full Text PDFInhibition of the biosynthesis of proinflammatory cytokines such as tumor necrosis factor and interleukin-1 via p38 has been an approach toward the development of a disease modifying agent for the treatment of chronic inflammation and autoimmune diseases. The development of a new core structure of p38 inhibitors, 3-(4-fluorophenyl)-2-(pyridin-4-yl)-1H-pyrrolo[3,2-b] pyridine, is described. X-ray crystallographic data of the lead bound to the active site of p38 was used to guide the optimization of the series.
View Article and Find Full Text PDF