Chemically active systems such as living cells are maintained out of thermal equilibrium due to chemical events which generate heat and lead to active fluctuations. A key question is to understand on which time and length scales active fluctuations dominate thermal fluctuations. Here, we formulate a stochastic field theory with Poisson white noise to describe the heat fluctuations which are generated by stochastic chemical events and lead to active temperature fluctuations.
View Article and Find Full Text PDFThe macroscopic hydrodynamic equations are derived for many-body systems in the local-equilibrium approach, using the Schrödinger picture of quantum mechanics. In this approach, statistical operators are defined in terms of microscopic densities associated with the fundamentally conserved quantities and other slow modes possibly emerging from continuous symmetry breaking, as well as macrofields conjugated to these densities. Functional identities can be deduced, allowing us to identify the reversible and dissipative parts of the mean current densities, to obtain general equations for the time evolution of the conjugate macrofields, and to establish the relationship to projection-operator methods.
View Article and Find Full Text PDF