Publications by authors named "Joel M Stein"

Functional magnetic resonance imaging (fMRI) offers an alternative to the traditional Wada test for presurgical language and memory lateralization that carries almost no risk. However, fMRI lateralization of episodic memory remains challenging because the hippocampus, which is fundamental to episodic memory, is smaller, more prone to susceptibility artifact, and harder to functionally modulate than language regions. We previously showed that a complex scene memory task can lateralize memory function in the mesial temporal lobe.

View Article and Find Full Text PDF

Background: The piriform cortex has been implicated in the initiation, spread and termination of epileptic seizures. This understanding has extended to surgical management of epilepsy, where it has been shown that resection or ablation of the piriform cortex can result in better outcomes. How and why the piriform cortex may play such a crucial role in seizure networks is not well understood.

View Article and Find Full Text PDF
Article Synopsis
  • Temporal encephaloceles (TE) are a lesser-known cause of epilepsy that can be surgically treated, and this systematic review compiles data on their clinical characteristics and treatment outcomes.
  • The analysis included 24 studies with a total of 423 patients, finding that TE patients typically have later seizure onset, different seizure patterns, and a greater incidence of idiopathic intracranial hypertension (IIH) compared to those without TE.
  • Surgical interventions show promising outcomes, with a 75-85% success rate for different surgical techniques, indicating that better recognition and understanding of TE could improve epilepsy management.
View Article and Find Full Text PDF
Article Synopsis
  • Positron Emission Tomography (FDG-PET) is commonly used to pinpoint seizure onset zones in temporal lobe epilepsy, but it’s expensive and uses a radioactive substance; an alternative, Arterial Spin Labeling (ASL), quantifies brain blood flow via MRI but isn't as effective for the same purpose.
  • This study involved 68 epilepsy patients, comparing FDG-PET with ASL to evaluate their coupling and effectiveness in localizing seizure onset zones, while also developing a deep learning tool called FlowGAN to create PET-like images from ASL data.
  • Results showed that while FDG-PET and ASL demonstrated varying levels of correlation in different brain regions, FDG-PET
View Article and Find Full Text PDF

Meningiomas are the most common primary intracranial tumors and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on brain MRI for diagnosis, treatment planning, and longitudinal treatment monitoring. However, automated, objective, and quantitative tools for non-invasive assessment of meningiomas on multi-sequence MR images are not available.

View Article and Find Full Text PDF

Background: Portable low-field-strength magnetic resonance imaging (MRI) systems represent a promising alternative to traditional high-field-strength systems with the potential to make MR technology available at scale in low-resource settings. However, lower image quality and resolution may limit the research and clinical potential of these devices. We tested two super-resolution methods to enhance image quality in a low-field MR system and compared their correspondence with images acquired from a high-field system in a sample of young people.

View Article and Find Full Text PDF

Objective: Epilepsy patients are often grouped together by clinical variables. Quantitative neuroimaging metrics can provide a data-driven alternative for grouping of patients. In this work, we leverage ultra-high-field 7-T structural magnetic resonance imaging (MRI) to characterize volumetric atrophy patterns across hippocampal subfields and thalamic nuclei in drug-resistant focal epilepsy.

View Article and Find Full Text PDF

Introduction: Portable low-field strength (64mT) MRI scanners promise to increase access to neuroimaging for clinical and research purposes, however these devices produce lower quality images compared to high-field scanners. In this study, we developed and evaluated a deep learning architecture to generate high-field quality brain images from low-field inputs using a paired dataset of multiple sclerosis (MS) patients scanned at 64mT and 3T.

Methods: A total of 49 MS patients were scanned on portable 64mT and standard 3T scanners at Penn (n=25) or the National Institutes of Health (NIH, n=24) with T1-weighted, T2-weighted and FLAIR acquisitions.

View Article and Find Full Text PDF

Objective: Clinicians use intracranial electroencephalography (iEEG) in conjunction with noninvasive brain imaging to identify epileptic networks and target therapy for drug-resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of "electrode reconstruction," which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. We developed a standalone, modular pipeline that performs electrode reconstruction.

View Article and Find Full Text PDF

Since the introduction of MRI as a sustainable diagnostic modality, global accessibility to its services has revealed a wide discrepancy between populations-leaving most of the population in LMICs without access to this important imaging modality. Several factors lead to the scarcity of MRI in LMICs; for example, inadequate infrastructure and the absence of a dedicated workforce are key factors in the scarcity observed. RAD-AID has contributed to the advancement of radiology globally by collaborating with our partners to make radiology more accessible for medically underserved communities.

View Article and Find Full Text PDF

Background: Collaboration between epilepsy centers is essential to integrate multimodal data for epilepsy research. Scalable tools for rapid and reproducible data analysis facilitate multicenter data integration and harmonization. Clinicians use intracranial EEG (iEEG) in conjunction with non-invasive brain imaging to identify epileptic networks and target therapy for drug-resistant epilepsy cases.

View Article and Find Full Text PDF

In March 2022, the first ISMRM Workshop on Low-Field MRI was held virtually. The goals of this workshop were to discuss recent low field MRI technology including hardware and software developments, novel methodology, new contrast mechanisms, as well as the clinical translation and dissemination of these systems. The virtual Workshop was attended by 368 registrants from 24 countries, and included 34 invited talks, 100 abstract presentations, 2 panel discussions, and 2 live scanner demonstrations.

View Article and Find Full Text PDF

Objective: Resting-state functional magnetic resonance imaging (rs-fMRI) at ultra high-field strengths (≥7T) is known to provide superior signal-to-noise and statistical power than comparable acquisitions at lower field strengths. In this study, we aim to provide a direct comparison of the seizure onset-zone (SOZ) lateralizing ability of 7T rs-fMRI and 3T rs-fMRI.

Methods: We investigated a cohort of 70 temporal lobe epilepsy (TLE) patients.

View Article and Find Full Text PDF

Background And Motivation: Functional gradients have been used to study differences in connectivity between healthy and diseased brain states, however this work has largely focused on the cortex. Because the subcortex plays a key role in seizure initiation in temporal lobe epilepsy (TLE), subcortical functional-connectivity gradients may help further elucidate differences between healthy brains and TLE, as well as differences between left (L)-TLE and right (R)-TLE.

Methods: In this work, we calculated subcortical functional-connectivity gradients (SFGs) from resting-state functional MRI (rs-fMRI) by measuring the similarity in connectivity profiles of subcortical voxels to cortical gray matter voxels.

View Article and Find Full Text PDF
Article Synopsis
  • Epilepsy surgery can help patients with drug-resistant epilepsy, but the impact of different surgical methods on brain structure over time has not been well studied.
  • This research analyzed 36 patients who underwent two types of epilepsy surgery (anterior temporal lobectomy and selective amygdalohippocampectomy) and used MRI scans to measure structural brain changes over an average period of 2 years post-surgery.
  • Results indicated that anterior temporal lobectomy led to more significant cortical thinning compared to selective amygdalohippocampectomy, with the amount of thinning being linked to the patients' pre-surgery cortical thickness and age.
View Article and Find Full Text PDF

Objective: Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. An increasingly identified subset of patients with TLE consists of those who show bilaterally independent temporal lobe seizures. The purpose of this study was to leverage network neuroscience to better understand the interictal whole brain network of bilateral TLE (BiTLE).

View Article and Find Full Text PDF

Objective: Measuring cortico-cortical evoked potentials (CCEPs) is a promising tool for mapping epileptic networks, but it is not known how variability in brain state and stimulation technique might impact the use of CCEPs for epilepsy localization. We test the hypotheses that (1) CCEPs demonstrate systematic variability across trials and (2) CCEP amplitudes depend on the timing of stimulation with respect to endogenous, low-frequency oscillations.

Methods: We studied 11 patients who underwent CCEP mapping after stereo-electroencephalography electrode implantation for surgical evaluation of drug-resistant epilepsy.

View Article and Find Full Text PDF

Background And Motivation: Functional gradients have been used to study differences in connectivity between healthy and diseased brain states, however this work has largely focused on the cortex. Because the subcortex plays a key role in seizure initiation in temporal lobe epilepsy (TLE), subcortical functional-connectivity gradients may help further elucidate differences between healthy brains and TLE, as well as differences between left (L)-TLE and right (R)-TLE.

Methods: In this work, we calculated subcortical functional-connectivity gradients (SFGs) from resting-state functional MRI (rs-fMRI) by measuring the similarity in connectivity profiles of subcortical voxels to cortical gray matter voxels.

View Article and Find Full Text PDF

Emotional events comprise our strongest and most valuable memories. Here we examined how the brain prioritizes emotional information for storage using direct brain recording and deep brain stimulation. First, 148 participants undergoing intracranial electroencephalographic (iEEG) recording performed an episodic memory task.

View Article and Find Full Text PDF

To determine the effect of implanting electrodes on electrographic features of nearby and connected brain regions in patients with drug-resistant epilepsy, we analyzed intracranial EEG recordings from 10 patients with drug-resistant epilepsy who underwent implant revision (placement of additional electrodes) during their hospitalization. We performed automated spike detection and measured EEG functional networks. We analyzed the original electrodes that remained in place throughout the full EEG recording, and we measured the change in spike rates and network connectivity in these original electrodes in response to implanting new electrodes.

View Article and Find Full Text PDF

The complex anatomy and deep spaces of the head and neck limit physical examination while also offering many points for entry and spread of infection. Radiologic imaging plays a crucial role in managing head and neck infections by defining the location and extent of disease, facilitating abscess drainage, and identifying complications. This review provides essential background and examples for imaging infection throughout the head and neck region.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) is one of the most common subtypes of focal epilepsy, with mesial temporal sclerosis (MTS) being a common radiological and histopathological finding. Accurate identification of MTS during presurgical evaluation confers an increased chance of good surgical outcome. Here we propose the use of glutamate-weighted chemical exchange saturation transfer (GluCEST) magnetic resonance imaging (MRI) at 7 Tesla for mapping hippocampal glutamate distribution in epilepsy, allowing to differentiate lesional from non-lesional mesial TLE.

View Article and Find Full Text PDF

A 64-year-old man presented with painless sequential bilateral vision loss, consistent with optic neuropathy, over the span of months. The significant decline in his visual function was out of proportion to the appearance of the optic nerves (which were not pale) or changes in his retinal nerve fiber layer thickness on optical coherence tomography. Neuroimaging revealed only mild T2 signal abnormality and faint enhancement in the left optic nerve.

View Article and Find Full Text PDF

Modern MRI scanners have trended toward higher field strengths to maximize signal and resolution while minimizing scan time. However, high-field devices remain expensive to install and operate, making them scarce outside of high-income countries and major population centers. Low-field strength scanners have drawn renewed academic, industry, and philanthropic interest due to advantages that could dramatically increase imaging access, including lower cost and portability.

View Article and Find Full Text PDF

To determine the effect of epilepsy on intracranial electroencephalography (EEG) functional connectivity, and the ability of functional connectivity to localize the seizure onset zone (SOZ), controlling for spatial biases.We analyzed intracranial EEG data from patients with drug-resistant epilepsy admitted for pre-surgical planning. We calculated intracranial EEG functional networks and determined whether changes in functional connectivity lateralized the SOZ using a spatial subsampling method to control for spatial bias.

View Article and Find Full Text PDF