Population dynamics depend on trophic interactions that are affected by climate change. The rise in sea temperature is associated with the disappearance of sea ice in the Arctic. In the Arctic part of the Barents Sea, Atlantic cod, capelin and polar cod are three fish populations that interact and are confronted with climate-induced sea ice reductions.
View Article and Find Full Text PDFMany species around the world have collapsed, yet only some have recovered. A key question is what happens to populations post collapse. Traditionally, marine fish collapses are linked to overfishing, poor climate, and recruitment.
View Article and Find Full Text PDFOver the last decades, mass mortality events have become increasingly common across taxa with sometimes devastating effects on population biomass. In the aquatic environment, fish are sensitive to mass mortality events, particularly at the early life stages that are crucial for population dynamics. However, it has recently been shown for fish, that a single mass mortality event in early life typically does not lead to population collapse.
View Article and Find Full Text PDFClimate change has a profound impact on species distribution and abundance globally, as well as local diversity, which affects ecosystem functioning. In particular, changes in population distribution and abundance may lead to changes in trophic interactions. Although species can often shift their spatial distribution when suitable habitats are available, it has been suggested that predator presence can be a constraint on climate-related distribution shifts.
View Article and Find Full Text PDFThe strength of species interactions may have profound effects on population dynamics. Empirical estimates of interaction strength are often based on the assumption that the interaction strengths are constant. Barents Sea (BS) cod and capelin are two fish populations for which such an interaction has been acknowledged and used, under the assumption of constant interaction strength, when studying their population dynamics.
View Article and Find Full Text PDFMating strategies are key components in the fitness of organisms, and notably in birds the occurrence of monogamy versus polygyny has attracted wide interest. We address this by a very comprehensive dataset (2899 breeding events spanning the years 1978-2019) of the white-throated dipper . Though the mating system of this species has been regarded as generally monogamous, we find that 7% of all breeding events were performed by polygynous males (approximately 15% of all pairs).
View Article and Find Full Text PDFBoth the Norwegian Spring Spawning herring () and the Northeast Arctic (NEA) cod () are examples of strong stock reduction and decline of the associated fisheries due to overfishing followed by a recovery. Cod and herring are both part of the Barents Sea ecosystem, which has experienced major warming events in the early (1920-1940) and late 20th century. While the collapse or near collapse of these stocks seems to be linked to an instability created by overfishing and climate, the difference of population dynamics before and after is not fully understood.
View Article and Find Full Text PDFThe ocean is a lifeline for human existence, but current practices risk severely undermining ocean sustainability. Present and future social-ecological challenges necessitate the maintenance and development of knowledge and action by stimulating collaboration among scientists and between science, policy, and practice. Here we explore not only how such collaborations have developed in the Nordic countries and adjacent seas but also how knowledge from these regions contributes to an understanding of how to obtain a sustainable ocean.
View Article and Find Full Text PDFClimate change has profound ecological effects, yet our understanding of how trophic interactions among species are affected by climate change is still patchy. The sympatric Atlantic haddock and cod are co-occurring across the North Atlantic. They compete for food at younger stages and thereafter the former is preyed by the latter.
View Article and Find Full Text PDFThe recruitment and biomass of a fish stock are influenced by their environmental conditions and anthropogenic pressures such as fishing. The variability in the environment often translates into fluctuations in recruitment, which then propagate throughout the stock biomass. In order to manage fish stocks sustainably, it is necessary to understand their dynamics.
View Article and Find Full Text PDFIn high-latitude marine environments, primary producers and their consumers show seasonal peaks of abundance in response to annual light cycle, water column stability and nutrient availability. Predatory species have adapted to this pattern by synchronising life-history events such as reproduction with prey availability. However, changing temperatures may pose unprecedented challenges by decoupling the predator-prey interactions.
View Article and Find Full Text PDFCollapses and regime changes are pervasive in complex systems (such as marine ecosystems) governed by multiple stressors. The demise of Atlantic cod ( Gadus morhua) stocks constitutes a text book example of the consequences of overexploiting marine living resources, yet the drivers of these nearly synchronous collapses are still debated. Moreover, it is still unclear why rebuilding of collapsed fish stocks such as cod is often slow or absent.
View Article and Find Full Text PDFClimate warming and harvesting affect the dynamics of species across the globe through a multitude of mechanisms, including distribution changes. In fish, migrations to and distribution on spawning grounds are likely influenced by both climate warming and harvesting. The Northeast Arctic (NEA) cod (Gadus morhua) performs seasonal migrations from its feeding grounds in the Barents Sea to spawning grounds along the Norwegian coast.
View Article and Find Full Text PDFMass mortality events caused by pulse anthropogenic or environmental perturbations (e.g., extreme weather, toxic spills or epizootics) severely reduce the abundance of a population in a short time.
View Article and Find Full Text PDFClimate change is expected to have profound ecological effects, yet shifts in competitive abilities among species are rarely studied in this context. Blue tits (Cyanistes caeruleus) and great tits (Parus major) compete for food and roosting sites, yet coexist across much of their range. Climate change might thus change the competitive relationships and coexistence between these two species.
View Article and Find Full Text PDFThe Barents Sea system is often depicted as a simple food web in terms of number of dominant feeding links. The most conspicuous feeding link is between the Northeast Arctic cod Gadus morhua, the world's largest cod stock which is presently at a historical high level, and capelin Mallotus villosus. The system also holds diverse seabird and marine mammal communities.
View Article and Find Full Text PDFCurrent evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species.
View Article and Find Full Text PDFIndividual marking is essential to study the life-history traits of animals and to track them in all kinds of ecological, behavioural or physiological studies. Unlike other birds, penguins cannot be banded on their legs due to their leg joint anatomy and a band is instead fixed around a flipper. However, there is now detailed evidence that flipper-banding has a detrimental impact on individuals.
View Article and Find Full Text PDFIn 2007, the Intergovernmental Panel on Climate Change highlighted an urgent need to assess the responses of marine ecosystems to climate change. Because they lie in a high-latitude region, the Southern Ocean ecosystems are expected to be strongly affected by global warming. Using top predators of this highly productive ocean (such as penguins) as integrative indicators may help us assess the impacts of climate change on marine ecosystems.
View Article and Find Full Text PDFPopulation growth, and hence the population's persistence, is affected by several factors such as climate, species interaction, and harvesting pressure. Proper resource management requires an understanding of these factors. We apply techniques based upon age-structured population matrices to analyze estimated stock sizes derived from annual bottom trawl sampling in the winter feeding area of northeast Arctic cod (Gadus morhua L.
View Article and Find Full Text PDFOverexploitation and climate change are increasingly causing unanticipated changes in marine ecosystems, such as higher variability in fish recruitment and shifts in species dominance. An ecosystem-based approach to fisheries attempts to address these effects by integrating populations, food webs and fish habitats at different scales. Ecosystem models represent indispensable tools to achieve this objective.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2008
Seabirds are sensitive indicators of changes in marine ecosystems and might integrate and/or amplify the effects of climate forcing on lower levels in food chains. Current knowledge on the impact of climate changes on penguins is primarily based on Antarctic birds identified by using flipper bands. Although flipper bands have helped to answer many questions about penguin biology, they were shown in some penguin species to have a detrimental effect.
View Article and Find Full Text PDFEuropean barn owl chicks (Tyto alba) show a body mass overshoot prior to fledging that has been predicted to serve as an energy reservoir during periods of stochastic food availability. However, the composition of the mass overshoot has heretofore not been directly examined in nestlings of this or any other species displaying a body mass overshoot during growth (e.g.
View Article and Find Full Text PDFTime-series covering 23 years for a long-lived seabird, the Atlantic puffin (Fratercula arctica L.) at Røst, northern Norway, was used to explore any indirect effects of climatic variations on chick production. By fitting statistical models on the duration of the nestling period, we found that it may be estimated using the average sea temperature and salinity at 0-20 m depth in March (having a positive and a negative effect, respectively).
View Article and Find Full Text PDFAltered body condition, increased incubation costs, and egg loss are important proximate factors modulating bird parental behavior, since they inform the adult about its remaining chances of survival or about the expected current reproductive success. Hormonal changes should reflect internal or external stimuli, since corticosterone levels (inducing nest abandonment) are known to increase while body condition deteriorates, and prolactin levels (stimulating incubation) decrease following egg predation. However, in a capital incubator that based its investment on available body reserves and naturally lost about half of its body mass during incubation, corticosterone should be maintained at a low threshold to avoid protein mobilization for energy supply.
View Article and Find Full Text PDF