A beta-glucuronide-based linker for attaching cytotoxic agents to monoclonal antibodies (mAbs) was designed and evaluated. We employed the cytotoxic auristatin derivatives MMAE (1a) and MMAF (1b) and doxorubicin propyloxazoline (DPO, 2) to give the beta-glucuronide drug-linkers 9a, 9b, and 17, respectively. Cysteine-quenched derivatives of 9b and 17 were determined to be substrates for E.
View Article and Find Full Text PDFPurpose: An antibody-drug conjugate consisting of monomethyl auristatin E (MMAE) conjugated to the anti-CD30 monoclonal antibody (mAb) cAC10, with eight drug moieties per mAb, was previously shown to have potent cytotoxic activity against CD30(+) malignant cells. To determine the effect of drug loading on antibody-drug conjugate therapeutic potential, we assessed cAC10 antibody-drug conjugates containing different drug-mAb ratios in vitro and in vivo.
Experimental Design: Coupling MMAE to the cysteines that comprise the interchain disulfides of cAC10 created an antibody-drug conjugate population, which was purified using hydrophobic interaction chromatography to yield antibody-drug conjugates with two, four, and eight drugs per antibody (E2, E4, and E8, respectively).