Purpose: In medical imaging, data scaling is sometimes desired to handle the system complexity, such as uniformity calibration. Since the data are usually saved in short integer, conventional data scaling will first scale the data in floating point format and then truncate or round the floating point data to short integer data. For example, when using truncation, scaling of 9 by 1.
View Article and Find Full Text PDFBackground: We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube.
View Article and Find Full Text PDFBackground: In cardiac SPECT perfusion imaging, motion correction of the data is critical to the minimization of motion introduced artifacts in the reconstructed images. Software-based (data-driven) motion correction techniques are the most convenient and economical approaches to fulfill this purpose. However, the accuracy is significantly affected by how the data complexities, such as activity overlap, non-uniform tissue attenuation, and noise are handled.
View Article and Find Full Text PDF