Publications by authors named "Joel K Campbell"

Context: Genetic variation at the transcription factor 7-like 2 locus has been linked to type 2 diabetes in predominantly European-derived populations. The biological basis of these associations remains to be determined.

Objective: The objective of this study was to evaluate previously associated variants for association with measures of glucose homeostasis in Hispanic-Americans and African-Americans and determine the biological mechanism(s) through which these variants exert their effect.

View Article and Find Full Text PDF

Objective: We previously detected an association between a region of the estrogen receptor-alpha (ESR1) gene and type 2 diabetes in an African-American case-control study; thus, we investigated this region for associations with the metabolic syndrome and its component traits in African-American families from the Insulin Resistance Atherosclerosis Family Study.

Research Design And Methods: A total of 17 single nucleotide polymorphisms (SNPs) from a contiguous 41-kb intron 1-intron 2 region of the ESR1 gene were genotyped in 548 individuals from 42 African-American pedigrees. Generalized estimating equations were computed using a sandwich estimator of the variance and exchangeable correlation to account for familial correlation.

View Article and Find Full Text PDF

Glucose homeostasis, a defining characteristic of physiological glucose metabolism, is the result of complex feedback relationships with both genetic and environmental determinants that influence insulin sensitivity and beta-cell function. Relatively little is known about the genetic basis of glucose homeostasis phenotypes or their relationship to risk of diabetes. Our group previously published a genome scan for glucose homeostasis traits in 284 African-American subjects from 21 pedigrees in the Insulin Resistance Atherosclerosis Study Family Study (IRASFS) and presented evidence for linkage to disposition index (DI) on chromosome 11q with a logarithm of odds (LOD) of 3.

View Article and Find Full Text PDF

Individuals with type 2 diabetes are at increased risk of cardiovascular disease (CVD) mortality and display increased levels of subclinical CVD. Genetic variation in PTPN1, a diabetes susceptibility gene, was investigated for a role in diabetic atherosclerosis. The PTPN1 gene encodes protein tyrosine phosphatase-1B, which is ubiquitously expressed and plays a role in the regulation of several signaling pathways.

View Article and Find Full Text PDF

This paper explores the decay of linkage disequilibrium (LD) on the autosomes and chromosome X. The extent of marker-marker LD is important for both linkage and association studies. The analysis of the Caucasian sample from the Collaborative Study on the Genetics of Alcoholism study revealed the expected negative relationship between the magnitude of the marker-marker LD and distance (cM), with the male and female subgroups exhibiting similar patterns of LD.

View Article and Find Full Text PDF

Adiponectin, coded for by the APM1 gene, is a novel adipocyte-derived hormone implicated in energy homeostasis and obesity. Several genetic studies have observed evidence of association between APM1 gene polymorphisms and features of the metabolic syndrome, such as insulin resistance and obesity. As part of a comprehensive genetic analysis of the APM1 gene, we have screened 96 unrelated individuals for polymorphisms in the promoter, coding regions, and 3'untranslated region (UTR).

View Article and Find Full Text PDF

Protein tyrosine phosphatase (PTP)-1B, encoded by the PTPN1 gene, catalyzes the dephosphorylation of proteins at tyrosyl residues. PTP-1B has been implicated in negatively regulating insulin signaling by dephosphorylating the phosphotyrosine residues of the insulin receptor. The genetic contribution of PTPN1 to measures of glucose homeostasis has been assessed in 811 Hispanic subjects from the Insulin Resistance Atherosclerosis Study Family Study (IRASFS).

View Article and Find Full Text PDF

Background: Previous linkage studies have suggested prostate cancer susceptibility genes located on chromosomes 1, 20, and X. Several putative prostate cancer candidate genes have also been identified including RNASEL, MSR1, and ELAC2. Presently, these linkage regions and candidate genes appear to explain only a small proportion of hereditary prostate cancer cases suggesting the need for additional whole genome analyses.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: