Laser-induced photodamage is a robust method for investigating retinal pathologies in small animals. However, aiming of the photocoagulation laser is often limited by manual alignment and lacks real-time feedback on lesion location and severity. Here, we demonstrate a multimodality OCT and SLO ophthalmic imaging system with an image-guided scanning laser lesioning module optimized for the murine retina.
View Article and Find Full Text PDFThe photoreceptor-specific nuclear receptor Nr2e3 is not expressed in Nr2e3 mice, a mouse model of the recessively inherited retinal degeneration enhanced S-cone sensitivity syndrome (ESCS). We characterized in detail C57BL/6J Nr2e3 mice in vivo by fundus photography, optical coherence tomography and fluorescein angiography and, post mortem, by histology and immunohistochemistry. White retinal spots and so-called 'rosettes' first appear at postnatal day (P) 12 in the dorsal retina and reach maximal expansion at P21.
View Article and Find Full Text PDFThe role of microglia in retinal inflammation is still ambiguous. Branch retinal vein occlusion initiates an inflammatory response whereby resident microglia cells are activated. They trigger infiltration of neutrophils that exacerbate blood-retina barrier damage, regulate postischemic inflammation and irreversible loss of neuroretina.
View Article and Find Full Text PDFSpectral domain optical coherence tomography (SD-OCT) and scanning laser ophthalmoscopy (SLO) are extensively used in experimental ophthalmology. In the present protocol, mice expressing green fluorescent protein (gfp) under the promoter of Cx3cr1 (BALB/c-Cx3cr1) were used to image microglia cells in vivo in the retina. Microglia are resident macrophages of the retina and have been implicated in several retinal diseases.
View Article and Find Full Text PDFThis report provides sound evidence that the small molecule pharmaceutical PLX5622, a highly selective CSF-1R kinase inhibitor, crosses the blood-retina barrier and suppresses microglia activity. Members of this class of drug are in advanced clinical development stages and may represent a novel approach to modulate ocular inflammatory processes.
View Article and Find Full Text PDFPurpose: To validate widefield autofluorescence (AF) in vivo imaging of the retina in mice expressing green fluorescent protein (gfp) in microglia, and to monitor retinal microglia reconstitution in vivo after lethal irradiation and bone marrow transplantation.
Methods: Transgenic Cx3cr1gfp/gfp and wildtype Balb/c mice were used in this study. A confocal scanning laser ophthalmoscope was used for AF imaging with a 55° and a widefield 102° lens.