ACS Phys Chem Au
January 2023
Tryptophan is one of few residues that participates in biological electron transfer reactions. Upon substitution of the native Cu center with Zn in the blue-copper protein azurin, a long-lived tryptophan neutral radical can be photogenerated. We report the following quantum yield values for Zn-substituted azurin in the presence of the electron acceptor Cu(II)-azurin: formation of the tryptophan neutral radical (Φ), electron transfer (Φ), fluorescence (Φ), and phosphorescence (Φ), as well as the efficiency of proton transfer of the cation radical (Φ).
View Article and Find Full Text PDFThe protein, azurin, has enabled the study of the tryptophan radical. Upon UV excitation of tyrosine-deficient apoazurin and in the presence of a Co(III) electron acceptor, the neutral radical (W48•) is formed. The lifetime of W48• in apoazurin is 41 s, which is shorter than the lifetime of several hours in Zn-substituted azurin.
View Article and Find Full Text PDFIsotopologues are valuable vibrational probes that shift features in a vibrational spectrum while preserving the electronic structure of the molecule. We report the vibrational and electronic spectra of perdeuterated tryptophan in solution (l-Trp-), as Trp48- in azurin, and as the photogenerated neutral tryptophan radical, Trp48-, in azurin. The UV resonance Raman bands of the perdeuterated closed-shell tryptophan in solution and in azurin are lower in frequency relative to the protiated counterpart.
View Article and Find Full Text PDF