An optoacoustic detection method suitable for depth profiling of optical absorption of layered or continuously varying tissue structures is presented. Detection of thermoelastically induced pressure transients allows reconstruction of optical properties of the sample to a depth of several millimeters with a spatial resolution of 24 mum. Acoustic detection is performed using a specially designed piezoelectric transducer, which is transparent for optical radiation.
View Article and Find Full Text PDFIn optoacoustic imaging, short laser pulses irradiate highly scattering human tissue and adiabatically heat embedded absorbing structures, such as blood vessels, to generate ultrasound transients by means of the thermoelastic effect. We present an optoacoustic vascular imaging system that records these transients on the skin surface with an ultrasound transducer array and displays the images online. With a single laser pulse a complete optoacoustic B-mode image can be acquired.
View Article and Find Full Text PDFBrief bursts of focal, low amplitude rhythmic activity have been observed on depth electroencephalogram (EEG) in the minutes before electrographic onset of seizures in human mesial temporal lobe epilepsy. We have found these periods to contain discrete, individualized synchronized activity in patient-specific frequency bands ranging from 20 to 40 Hz. We present a method for detecting and displaying these events using a periodogram of the sign-limited temporal derivative of the EEG signal, denoted joint sign periodogram event characterization transform (JSPECT).
View Article and Find Full Text PDF