Publications by authors named "Joel J Milner"

Bacterial phytopathogens represent a significant threat to many economically important crops. Current control measures often inflict harm on the environment and may ultimately impact on human health through the spread of antibiotic resistance. Antimicrobial proteins such as bacteriocins have been suggested as the next generation of disease control agents since they are able to specifically target the pathogen of interest with minimal impact on the wider microbial community and environment.

View Article and Find Full Text PDF

Optical spectroscopy can be used to quickly characterise the structural properties of individual molecules. However, it cannot be applied to biological assemblies because light is generally blind to the spatial distribution of the component molecules. This insensitivity arises from the mismatch in length scales between the assemblies (a few tens of nm) and the wavelength of light required to excite chromophores (≥150 nm).

View Article and Find Full Text PDF

Gram-negative phytopathogenic bacteria are a significant threat to food crops. These microbial invaders are responsible for a plethora of plant diseases and can be responsible for devastating losses in crops such as tomatoes, peppers, potatoes, olives, and rice. Current disease management strategies to mitigate yield losses involve the application of chemicals which are often harmful to both human health and the environment.

View Article and Find Full Text PDF
Article Synopsis
  • Pseudomonas syringae is a plant pathogen that affects important crops like tomatoes and soybeans, leading to significant economic losses, and current protection methods are not very effective.
  • Research shows that a specific bacteriocin, putidacin L1 (PL1), can be produced in plants like Arabidopsis and Nicotiana benthamiana, offering effective resistance against various strains of Pseudomonas syringae.
  • The study suggests that using bacteriocins in crops could be a promising alternative strategy for managing bacterial diseases, similar to how genetic modification has been successfully applied for pest control.
View Article and Find Full Text PDF

Autophagy plays a paramount role in mammalian antiviral immunity including direct targeting of viruses and their individual components, and many viruses have evolved measures to antagonize or even exploit autophagy mechanisms for the benefit of infection. In plants, however, the functions of autophagy in host immunity and viral pathogenesis are poorly understood. In this study, we have identified both anti- and proviral roles of autophagy in the compatible interaction of cauliflower mosaic virus (CaMV), a double-stranded DNA pararetrovirus, with the model plant We show that the autophagy cargo receptor NEIGHBOR OF BRCA1 (NBR1) targets nonassembled and virus particle-forming capsid proteins to mediate their autophagy-dependent degradation, thereby restricting the establishment of CaMV infection.

View Article and Find Full Text PDF

Iron is a limiting nutrient in bacterial infection putting it at the centre of an evolutionary arms race between host and pathogen. Gram-negative bacteria utilize TonB-dependent outer membrane receptors to obtain iron during infection. These receptors acquire iron either in concert with soluble iron-scavenging siderophores or through direct interaction and extraction from host proteins.

View Article and Find Full Text PDF

The colicin-like bacteriocins are potent protein antibiotics that have evolved to efficiently cross the outer membrane of Gram-negative bacteria by parasitizing nutrient uptake systems. We have structurally characterized the colicin M-like bacteriocin, pectocin M2, which is active against strains of Pectobacterium spp. This unusual bacteriocin lacks the intrinsically unstructured translocation domain that usually mediates translocation of these bacteriocins across the outer membrane, containing only a single globular ferredoxin domain connected to its cytotoxic domain by a flexible α-helix, which allows it to adopt two distinct conformations in solution.

View Article and Find Full Text PDF

Cauliflower mosaic virus (CaMV) encodes a 520 aa polypeptide, P6, which participates in several essential activities in the virus life cycle including suppressing RNA silencing and salicylic acid-responsive defence signalling. We infected Arabidopsis with CaMV mutants containing short in-frame deletions within the P6 ORF. A deletion in the distal end of domain D-I (the N-terminal 112 aa) of P6 did not affect virus replication but compromised symptom development and curtailed the ability to restore GFP fluorescence in a GFP-silenced transgenic Arabidopsis line.

View Article and Find Full Text PDF

Cauliflower mosaic virus (CaMV) encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling) and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst).

View Article and Find Full Text PDF

Colicin-like bacteriocins show potential as next generation antibiotics with clinical and agricultural applications. Key to these potential applications is their high potency and species specificity that enables a single pathogenic species to be targeted with minimal disturbance of the wider microbial community. Here we present the structure and function of the colicin M-like bacteriocin, syringacin M from Pseudomonas syringae pv.

View Article and Find Full Text PDF

Plant development and defence are intimately connected to programmed cell death (PCD). PCD can occur after environmental cues such as pathogen infection, mechanical damage or abiotic stress. However, PCD also constitutes an essential feature of various aspects of growth and development.

View Article and Find Full Text PDF

We infected a transgenic Arabidopsis line (GxA), containing an amplicon-silenced 35S : : GFP transgene, with cauliflower mosaic virus (CaMV), a plant pararetrovirus with a DNA genome. Systemically infected leaves showed strong GFP fluorescence and amplicon transcripts were detectable in Northern blots, indicating that silencing of GFP had been suppressed during CaMV-infection. Transgenic Arabidopsis lines expressing CaMV protein P6, the major genetic determinant of symptom severity, were crossed with GxA.

View Article and Find Full Text PDF

Long-distance virus transport takes place through the vascular system and is dependent on the movement of photoassimilates. Here, patterns of symptom development, virus movement and gene expression were analysed in Arabidopsis following inoculation with Cauliflower mosaic virus (CaMV) on a single leaf. Virus accumulation and expression of markers for the salicylic acid (SA) and ethylene/jasmonate (Et/JA) defence pathways, PR-1 and PDF1.

View Article and Find Full Text PDF

We analyzed the susceptibility of Arabidopsis mutants with defects in salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling to infection by Cauliflower mosaic virus (CaMV). Mutants cpr1-1 and cpr5-2, in which SA-dependent defense signaling is activated constitutively, were substantially more resistant than the wild type to systemic infection, implicating SA signaling in defense against CaMV. However, SA-deficient NahG, sid2-2, eds5-1, and pad4-1 did not show enhanced susceptibility.

View Article and Find Full Text PDF

We analyzed expression of marker genes for three defense pathways during infection by Cauliflower mosaic virus (CaMV), a compatible pathogen of Arabidopsis (Arabidopsis thaliana), using luciferase reporter transgenes and directly by measuring transcript abundance. Expression of PR-1, a marker for salicylic acid signaling, was very low until 8 d postinoculation and then rose sharply, coinciding with the rise in virus levels. In contrast, as early as 2 h postinoculation, transcriptional up-regulation of GST1-a marker for reactive oxygen species-and PDF1.

View Article and Find Full Text PDF

Protein P6 is the main symptom determinant of cauliflower mosaic virus (CaMV), and transgene-mediated expression in Arabidopsis induces a symptom-like phenotype in the absence of infection. Seeds of a P6-transgenic line, A7, were mutagenized by gamma-irradiation and M2 seedlings were screened for mutants that suppressed the phenotype of chlorosis and stunting. We identified four mutants that were larger and less chlorotic than the A7 parent but which contained an intact and transcriptionally active transgene.

View Article and Find Full Text PDF

PR-1 has been extensively used as a marker for salicylic acid (SA)-mediated defence and systemic and local acquired resistance. The Arabidopsis Genome Project annotates At2g19990 as PR-1. This gene is also identified as PR-1 in two "full genome" Arabidopsis microarrays, and TAIR cites approximately 60 articles to describe its patterns of expression.

View Article and Find Full Text PDF

The contents of single plant cells can be sampled using glass microcapillaries. By combining such single-cell sampling with reverse transcription-polymerase chain reaction (RT-PCR), transcripts of individual genes can be identified and, in principle, quantified. This provides a valuable technique for the analysis and quantification of the intercellular distribution of gene expression in complex tissues.

View Article and Find Full Text PDF

summary The development of disease symptoms in plants infected with a compatible virus involves complex signalling interactions between host and viral gene products. Photoperiod is an important influence on the transition from vegetative growth to flowering. Symptoms in wild-type Arabidopsis plants grown under long days were much less severe than in plants grown under short days, although under long days, the levels of replicating virus were 1.

View Article and Find Full Text PDF