Background: Mitochondrial disease is a family of genetic disorders characterized by defects in the generation and regulation of energy. Epilepsy is a common symptom of mitochondrial disease, and in the vast majority of cases, refractory to commonly used antiepileptic drugs. Ferroptosis is a recently-described form of iron- and lipid-dependent regulated cell death associated with glutathione depletion and production of lipid peroxides by lipoxygenase enzymes.
View Article and Find Full Text PDFFerroptosis is a form of programmed cell death associated with inflammation, neurodegeneration, and ischemia. Vitamin E (alpha-tocopherol) has been reported to prevent ferroptosis, but the mechanism by which this occurs is controversial. To elucidate the biochemical mechanism of vitamin E activity, we systematically investigated the effects of its major vitamers and metabolites on lipid oxidation and ferroptosis in a striatal cell model.
View Article and Find Full Text PDFHeme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains.
View Article and Find Full Text PDFCysteine -nitrosation is a reversible post-translational modification mediated by nitric oxide (NO)-derived agents. -Nitrosation participates in cellular signaling and is associated with several diseases such as cancer, cardiovascular diseases, and neuronal disorders. Despite the physiological importance of this nonclassical NO-signaling pathway, little is understood about how much -nitrosation affects protein function.
View Article and Find Full Text PDFAcute and specific sensing of diatomic gas molecules is an essential facet of biological signaling. Heme nitric oxide/oxygen binding (H-NOX) proteins are a family of gas sensors found in diverse classes of bacteria and eukaryotes. The most commonly characterized bacterial H-NOX domains are from facultative anaerobes and are activated through a conformational change caused by formation of a 5-coordinate Fe(II)-NO complex.
View Article and Find Full Text PDF