Publications by authors named "Joel Heisler"

Article Synopsis
  • The self-association of therapeutic antibodies can lead to high viscosity, complicating manufacturing and limiting subcutaneous delivery, with previous solutions focusing on variable domain mutations and excipients.
  • This study examined various Fc mutations on the viscosity of two IgG antibodies: omalizumab (anti-IgE) and trastuzumab (anti-HER2), revealing that certain Fc modifications significantly reduced omalizumab's high viscosity (from 176 cP).
  • Molecular dynamics simulations provided insights into how these Fc mutations affect the antibodies' electrostatic and hydrophobic properties, suggesting that optimizing Fc mutations could improve future antibody therapies for easier subcutaneous administration.
View Article and Find Full Text PDF

Circadian clocks are intracellular systems that orchestrate metabolic processes in anticipation of sunrise and sunset by providing an internal representation of local time. Because the ~24-h metabolic rhythms they produce are important to health across diverse life forms there is growing interest in their mechanisms. However, mechanistic studies are challenging in vivo due to the complex, that is, poorly defined, milieu of live cells.

View Article and Find Full Text PDF

As the only circadian oscillator that can be reconstituted with its constituent proteins KaiA, KaiB, and KaiC using ATP as an energy source, the cyanobacterial circadian oscillator serves as a model system for detailed mechanistic studies of day-night transitions of circadian clocks in general. The day-to-night transition occurs when KaiB forms a night-time complex with KaiC to sequester KaiA, the latter of which interacts with KaiC during the day to promote KaiC autophosphorylation. However, how KaiB forms the complex with KaiC remains poorly understood, despite the available structures of KaiB bound to hexameric KaiC.

View Article and Find Full Text PDF

Circadian clocks control gene expression to provide an internal representation of local time. We report reconstitution of a complete cyanobacterial circadian clock in vitro, including the central oscillator, signal transduction pathways, downstream transcription factor, and promoter DNA. The entire system oscillates autonomously and remains phase coherent for many days with a fluorescence-based readout that enables real-time observation of each component simultaneously without user intervention.

View Article and Find Full Text PDF

Stochastic diffusion of a solution of fluorophores after photoselection reduces the polarization of emission, or fluorescence anisotropy. Because this randomization process is slower for larger molecules, fluorescence anisotropy is effective for measuring the kinetics of protein-binding events. Here, we describe how to use the technique to carry out real-time observations in vitro of the cyanobacterial circadian clock.

View Article and Find Full Text PDF

The cyanobacterial circadian clock in consists of three proteins, KaiA, KaiB, and KaiC. KaiA and KaiB rhythmically interact with KaiC to generate stable oscillations of KaiC phosphorylation with a period of 24 h. The observation of stable circadian oscillations when the three clock proteins are reconstituted and combined in vitro makes it an ideal system for understanding its underlying molecular mechanisms and circadian clocks in general.

View Article and Find Full Text PDF

Uniquely, the circadian clock of cyanobacteria can be reconstructed outside the complex milieu of live cells, greatly simplifying the investigation of a functioning biological chronometer. The core oscillator component is composed of only three proteins, KaiA, KaiB, and KaiC, and together with ATP they undergo waves of assembly and disassembly that drive phosphorylation rhythms in KaiC. Typically, the time points of these reactions are analyzed ex post facto by denaturing polyacrylamide gel electrophoresis, because this technique resolves the different states of phosphorylation of KaiC.

View Article and Find Full Text PDF

Circadian clocks are ubiquitous timing systems that induce rhythms of biological activities in synchrony with night and day. In cyanobacteria, timing is generated by a posttranslational clock consisting of KaiA, KaiB, and KaiC proteins and a set of output signaling proteins, SasA and CikA, which transduce this rhythm to control gene expression. Here, we describe crystal and nuclear magnetic resonance structures of KaiB-KaiC,KaiA-KaiB-KaiC, and CikA-KaiB complexes.

View Article and Find Full Text PDF

Abstract: Gaining a full understanding of the mechanisms of action of natural products as therapeutic agents includes observing the effects of natural products on cellular morphology, because abnormal cellular morphology is an important aspect of cellular transformations that occur as part of disease states. In this study a set of natural products was examined in search of small molecules that influence the cylindrical morphology of fission yeast Schizosaccharomyces pombe. Imaging flow cytometry of large populations of S.

View Article and Find Full Text PDF