Publications by authors named "Joel Grant"

Tunable bioprinting materials are capable of creating a broad spectrum of physiological mimicking 3D models enabling in vitro studies that more accurately resemble in vivo conditions. Tailoring the material properties of the bioink such that it achieves both bioprintability and biomimicry remains a key challenge. Here we report the development of engineered composite hydrogels consisting of gelatin and alginate components.

View Article and Find Full Text PDF

The cellular, biochemical, and biophysical heterogeneity of the native tumor microenvironment is not recapitulated by growing immortalized cancer cell lines using conventional two-dimensional (2D) cell culture. These challenges can be overcome by using bioprinting techniques to build heterogeneous three-dimensional (3D) tumor models whereby different types of cells are embedded. Alginate and gelatin are two of the most common biomaterials employed in bioprinting due to their biocompatibility, biomimicry, and mechanical properties.

View Article and Find Full Text PDF

Human tumour progression is a dynamic process involving diverse biological and biochemical events such as genetic mutation and selection in addition to physical, chemical, and mechanical events occurring between cells and the tumour microenvironment. Using 3D bioprinting we have developed a method to embed MDA-MB-231 triple negative breast cancer cells, and IMR-90 fibroblast cells, within a cross-linked alginate/gelatin matrix at specific initial locations relative to each other. After 7 days of co-culture the MDA-MB-231 cells begin to form multicellular tumour spheroids (MCTS) that increase in size and frequency over time.

View Article and Find Full Text PDF