Summary: Identification of allelic or corresponding genes (pan-genes) within a species or genus is important for discovery of biologically significant genetic conservation and variation. Similarly, identification of orthologs (gene families) across wider evolutionary distances is important for understanding the genetic basis for similar or differing traits. Especially in plants, several complications make identification of pan-genes and gene families challenging, including whole-genome duplications, evolutionary rate differences among lineages, and varying qualities of assemblies and annotations.
View Article and Find Full Text PDFIn this chapter, we introduce the main components of the Legume Information System ( https://legumeinfo.org ) and several associated resources. Additionally, we provide an example of their use by exploring a biological question: is there a common molecular basis, across legume species, that underlies the photoperiod-mediated transition from vegetative to reproductive development, that is, days to flowering? The Legume Information System (LIS) holds genetic and genomic data for a large number of crop and model legumes and provides a set of online bioinformatic tools designed to help biologists address questions and tasks related to legume biology.
View Article and Find Full Text PDFAround the world, scavenging birds such as vultures and condors have been experiencing drastic population declines. Scavenging birds have a distinct digestive process to deal with higher amounts of bacteria in their primary diet of carcasses in varying levels of decay. These observations motivate us to present an analysis of captive and healthy California condor (Gymnogyps californianus) microbiomes to characterize a population raised together under similar conditions.
View Article and Find Full Text PDFDetermining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens.
View Article and Find Full Text PDFBackground: Classification is difficult for shotgun metagenomics data from environments such as soils, where the diversity of sequences is high and where reference sequences from close relatives may not exist. Approaches based on sequence-similarity scores must deal with the confounding effects that inheritance and functional pressures exert on the relation between scores and phylogenetic distance, while approaches based on sequence alignment and tree-building are typically limited to a small fraction of gene families. We describe an approach based on finding one or more exact matches between a read and a precomputed set of peptide 10-mers.
View Article and Find Full Text PDFProtein functions require conformational motions. We show here that the dominant conformational motions are slaved by the hydration shell and the bulk solvent. The protein contributes the structure necessary for function.
View Article and Find Full Text PDF1,4-beta-D-Xylan is the major component of plant cell-wall hemicelluloses. beta-D-Xylosidases are involved in the breakdown of xylans into xylose and belong to families 3, 39, 43, 52, and 54 of glycoside hydrolases. Here, we report the first crystal structure of a member of family 39 glycoside hydrolase, i.
View Article and Find Full Text PDFCurr Drug Targets Infect Disord
June 2002
Structural genomics, the large-scale determination of protein structures, promises to provide a broad structural foundation for drug discovery. The tuberculosis (TB) Structural Genomics Consortium is devoted to encouraging, coordinating, and facilitating the determination of structures of proteins from Mycobacterium tuberculosis and hopes to determine 400 TB protein structures over 5 years. The Consortium has determined structures of 28 proteins from TB to date.
View Article and Find Full Text PDFStructural genomics has the ambitious goal of delivering three-dimensional structural information on a genome-wide scale. Yet only a small fraction of natural proteins are suitable for structure determination because of bottlenecks such as poor expression, aggregation, and misfolding of proteins, and difficulties in solubilization and crystallization. We propose to overcome these bottlenecks by producing soluble, highly expressed proteins that are derived from and closely related to their natural homologs.
View Article and Find Full Text PDF