Publications by authors named "Joel B. Alderete"

Photodynamic therapy (PDT) has developed as an efficient strategy for cancer treatment. PDT involves the production of reactive oxygen species (ROS) by light irradiation after activating a photosensitizer (PS) in the presence of O. PS-coupled nanomaterials offer additional advantages, as they can merge the effects of PDT with conventional enabling-combined photo-chemotherapeutics effects.

View Article and Find Full Text PDF

This article describes the synthesis, characterization (H NMR, C NMR, FT-IR, HRMS and XRD), UV-Vis absorption and fluorescence spectra, theoretical analysis, evaluation of nonlinear optical properties (NLO), thermal analysis and determination of the hemolytic capacity of the compound ()--(4-(3-(benzo[][1,3]dioxol-5-yl)acryloyl)phenyl)quinoline-3-carboxamide (5). Radiological findings showed that compound 5 crystallized in space group 2. Furthermore, theoretical DFT studies performed with the B3LYP and M062X functionals showed good agreement with the experimental results and provided valuable information on the molecular and electronic structure, reactivity, polarizability, and kinematic stability of the compound.

View Article and Find Full Text PDF

In this study, two pyrazolo[3,4-]pyridine derivatives (4a and 4b) were grown using a slow evaporation solution growth technique and characterized by FT-IR, HRMS, H/C NMR spectroscopy, and X-ray crystallography. The 4a and 4b structures crystallized in monoclinic and triclinic systems with space groups 2/ and 1̄, respectively. Theoretical calculations were performed at the DFT/B3LYP level for the optimized geometries.

View Article and Find Full Text PDF

A single crystal of a piperonal chalcone derivative was obtained, fully characterized, and crystallized by a slow evaporation technique. The synthesized compound was characterized by UV-Visible, FT-IR, HRMS, H NMR, and C NMR spectroscopic studies and X-ray crystallography, revealing that the crystal belongs to a triclinic crystal system with a 1̄ space group, = 2. In the present work, we focus on molecular modeling studies such as Hirshfeld surface analysis, energy framework calculations, frontier molecular orbital analysis, natural bond orbital analysis, and NLO properties of a π-conjugate system combining the chalcone and the pyrazole[3,4-]pyridine scaffolds to describe the in-depth structural analysis thereof.

View Article and Find Full Text PDF

E-selectin is a cell-adhesion receptor with specific recognition capacity toward sialo-fucosylated Lewis carbohydrates present in leukocytes and tumor cells. E-selectin interactions mediate the progress of inflammatory processes and tumor metastasis, which aroused the interest in using this protein as a biomolecular target to design glycomimetic inhibitors for active targeting or therapeutic purposes. In this work, we report the rational discovery of two novel glycomimetic peptides targeting E-selectin based on mutations of the reference selectin-binding peptide IELLQAR.

View Article and Find Full Text PDF

Nanoscale molecularly imprinted polymers (nanoMIPs) are powerful molecular recognition tools with broad applications in the diagnosis, prognosis, and treatment of complex diseases. In this work, fully atomistic molecular dynamics (MD) simulations are used to assist the design of nanoMIPs with recognition capacity toward l-fucose and d-mannose as prototype disease biomarkers. MD simulations were conducted on prepolymerization mixtures containing different molar ratios of the monomers -isopropylacrylamide (NIPAM), methacrylamide (MAM), and (4-acrylamidophenyl)(amino)methaniminium acetate (AB) and fixed molar ratios of the cross-linker ethylene glycol dimethacrylate (EGDMA) in explicit acetonitrile as the porogenic solvent.

View Article and Find Full Text PDF

The purpose of this study was to design a polyamidoamine (PAMAM)-based nanovector for the efficient delivery of methotrexate to U87 glioma cells. To this end, 0-100% acetylated PAMAM dendrimers of the fourth generation were synthesized and evaluated using drug encapsulation measurements, molecular dynamics simulations, neurotoxicity assays and neuronal internalization experiments. The best system was tested as a nanovector for methotrexate delivery to U87 glioma cells.

View Article and Find Full Text PDF

Microtubules (MT) are cytoskeletal polymers of αβ-tubulin dimers that play a critical role in many cellular functions. Diverse antimitotic drugs bind to MT and disrupt their dynamics acting as MT stabilizing or destabilizing agents. The occurrence of undesired side effects and drug resistance encourages the search for novel MT binding agents with chemically diverse structures and different interaction profiles compared to known active compounds.

View Article and Find Full Text PDF

The transmembrane glycoprotein mucin 1 (MUC1) is an attractive tumor marker for cancer therapy and diagnosis. The nine amino acid extracellular epitope APDTRPAPG of this protein is selectively recognized by the S2.2 single-stranded DNA anti-MUC1 aptamer, which has emerged as a promising template for designing novel targeting agents for MUC1-directed therapy.

View Article and Find Full Text PDF

In this work, molecular dynamics and QM/MM calculations were employed to examine the structural and catalytic features of the retaining glucosyltransferase GTF-SI from the GH70 family, which participates in the process of caries formation. Our goal was to obtain a deeper understanding of the role of R475 in the mechanism of sucrose breakage. This residue is highly conserved in the GH70 family and so far there has been no evidence that shows what could be the role of this residue in the catalysis performed by GTF-SI.

View Article and Find Full Text PDF

Microtubules (MT) are dynamic cytoskeletal components that play a crucial role in cell division. Disrupting MT dynamics by MT stabilizers is a widely employed strategy to control cell proliferation in cancer therapy. Most MT stabilizers bind to the taxol (TX) site located at the luminal interface between protofilaments, except laulimalide and peloruside A (PLA), which bind to an interfacial pocket on outer MT surface.

View Article and Find Full Text PDF

High-risk strains of human papillomavirus (HPV) have been identified as the etiologic agent of some anogenital tract, head, and neck cancers. Although prophylactic HPV vaccines have been approved; it is still necessary a drug-based treatment against the infection and its oncogenic effects. The E6 oncoprotein is one of the most studied therapeutic targets of HPV, it has been identified as a key factor in cell immortalization and tumor progression in HPV-positive cells.

View Article and Find Full Text PDF

Understanding the molecular features responsible for the plasma kinetics of surface-modified polyamido amine (PAMAM) dendrimers is critical to explore novel biomedical applications for these nanomaterials. In this report, polyethylene glycol (PEG) and folic acid (FA) were employed to obtain partially-substituted PAMAM dendrimers as model biocompatible nanomaterials with different size, charge and surface functionality. Cytotoxicity assays on HEK cells at 1-500 μM concentration confirmed that PEG and FA incorporation increased the cell viability of PAMAM-based nanomaterials.

View Article and Find Full Text PDF

In this work, QM/MM calculations were employed to examine the catalytic mechanism of the retaining glucosyltransferase GTF-SI enzyme, which participates in the process of caries formation. Our goal was to characterize, with atomistic details, the mechanism of sucrose hydrolysis and the catalytic factors that modulate this reaction. Our results suggest a concerted mechanism for sucrose hydrolysis in which the first event corresponds to the glycosidic bond breakage assisted by Glu515, followed by the nucleophilic attack of Asp477, leading to the formation of the Covalent Glycosyl Enzyme (CGE) intermediate.

View Article and Find Full Text PDF

Laulimalide (LAU) and Peloruside A (PLA) are non-taxane microtubule stabilizing agents with promising antimitotic properties. These ligands promote the assembly of microtubules (MTs) by targeting a unique binding site on β-tubulin. The X-ray structure for LAU/PLA-tubulin association was recently elucidated, but little information is available regarding the role of these ligands as modulators of interdimeric interactions across MTs.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations were employed to study the tubulin-binding modes of 20 epothilone derivatives spanning a wide range of antitumor activity. Trajectory analysis revealed that active ligands shared a common region of association and similar binding poses compared to the high-resolution crystal structure of the tubulin complex with epothilone A, the stathmin-like protein RB3, and tubulin tyrosine ligase (PDB code 4I50). Conformational analysis of epothilones in aqueous solution and tubulin-bound states indicated that the bound conformations of active species can be found to a significant extent within the ensemble of conformers available in aqueous solution.

View Article and Find Full Text PDF

Peloruside A (PLA) and Laulimalide (LAU) are novel microtubule-stabilizing agents with promising properties against different cancer types. These ligands share a non-taxoid binding site at the outer surface of β-tubulin and promote microtubule stabilization by bridging two adjacent αβ-tubulin dimers from parallel protofilaments. Recent site-directed mutagenesis experiments confirmed the existence of a unique β-tubulin site mutation (Gln293Met) that specifically increased the activity of PLA and caused resistance to LAU, without affecting the stability of microtubules in the absence of the ligands.

View Article and Find Full Text PDF

PEGylated PAMAM-G4 dendrimers with substitution percentages of 50% and intermediate size PEG chains (0.55 and 2.0 kDa) were synthesized and evaluated as solubility enhancers and potential supramolecular carriers for the poorly soluble drug Silybin (SIL).

View Article and Find Full Text PDF

PEGylated PAMAM dendrimers (PEG-PAMAM) have been extensively studied as versatile vehicles for drug delivery. Nevertheless, little information has been reported regarding the effect of the PEGylation degree on the drug-loading properties of these systems, aimed at maximizing their performance as drug carrier nanocarrriers. In this work, fully atomistic molecular dynamics (MD) simulations were employed to examine the association of methotrexate (MTX) with native and diversely PEGylated PAMAM-G4 dendrimers, using 2 kDa PEG chains with substitution degrees from 25 to 100% and 100:1 drug:dendrimer ratios to mimic experimental conditions of drug excess in saturated solution.

View Article and Find Full Text PDF

Molecular dynamics simulations and binding free energy calculations were employed to examine the interaction between E-selectin and six structurally related oligosaccharides including the physiological ligand sialyl Lewis x. Molecular dynamics simulations revealed that sialyl Lewis x and its mimics share a common binding region and similar interactions with E-selectin involving the formation of hydrogen bonds with Glu80, Asn82, Asn83, Arg97, Asn105, Asp106, and Glu107 residues and electrostatic contacts with Ca and the positively charged Lys111 and Lys 113 residues. Regarding binding free energy calculations, the performance of the rigorous but computationally expensive pathway methods TI, BAR, and MBAR was compared to the less rigorous but faster end-point methods MM/PBSA and MM/GBSA aimed at identifying a suitable approach to deal with the very subtle binding free energy differences within the ligands under study.

View Article and Find Full Text PDF

PAMAM-grafted TiO2 nanotubes (PAMAM-TiO2NT) have been synthesized and evaluated as new drug nanocarriers, using curcumin (CUR), methotrexate (MTX), and silibinin (SIL) as model therapeutic compounds. TiO2NT were surface-modified using a silane coupling agent and subsequently conjugated with PAMAM dendrimer of the third generation. The characterization of PAMAM-TiO2NT nanomaterials was performed by FTIR, TEM, N2 adsorption-desorption isotherms, XRD, and TGA techniques, which accounted for a 2.

View Article and Find Full Text PDF

E-selectin is an endothelial protein that participates in the adhesion of metastatic cancer cells, and is therefore a relevant target for antitumor therapeutic intervention. In this work, virtual screening was used to identify new E-selectin inhibitors from a subset of drug-like molecules retrieved from the ZINC database, including the physiological ligand sLe(x) as reference structure (PDB ID: 1G1T). Four hits were chosen and subjected to molecular dynamics simulations and fluorescence binding assays, which led to the determination of experimental dissociation constants between 333 and 1012 μm.

View Article and Find Full Text PDF

Using molecular modeling, we have investigated the structure and dynamic properties of epothilone B-tubulin complexes with wild-type and mutated tubulin, aimed at identifying the molecular factors involved in the emergence of drug resistance induced by four protein mutations at Phe270Val, Thr274Ile, Arg282Gln, and Gln292Glu. Our results revealed that tubulin mutations render significant changes in the protein conformation in regions involved either in the binding of the ligand or in interdimer contacts that are relevant to the assembly of stable microtubules. In addition, point mutations induce drastic changes in the binding pose of the ligand and in the interaction networks responsible for the epothilone-tubulin association.

View Article and Find Full Text PDF

Molecular dynamics simulations were employed to analyze the conformational preferences and binding modes of epothilones A and B as a source of structural information regarding the antitumor properties of these species. Our results suggest that the conformation of free and tubulin-bound epothilones is strongly influenced by the presence of a methyl group at C12 and that epothilones A and B exploit the binding cavity in a unique and different way. The binding sites of epothilones A and B share a common region of association (Leu215, Leu217, His227, Leu228, Ala231, Phe270, Gly360, and Leu361), but lead to different ligand-residue interactions.

View Article and Find Full Text PDF

A Structure Activity Relationship (SAR) study for laccase mediator systems was performed in order to correctly classify different natural phenolic mediators. Decision tree (DT) classification models with a set of five quantum-chemical calculated molecular descriptors were used. These descriptors included redox potential (ɛ°), ionization energy (E(i)), pK(a), enthalpy of formation of radical (Δ(f)H), and OH bond dissociation energy (D(O-H)).

View Article and Find Full Text PDF