Publications by authors named "Joel B Sheffield"

The widespread use of aluminum oxide nanoparticles (AlO NPs) unavoidably causes the release of NPs into the environment, potentially having unforeseen consequences for biological processes. Due to the well-known issue of Al phytoxicity, plant interactions with AlO NPs are cause for concern, but these interactions remain poorly understood. This study investigated the effects of AlO NPs on lettuce (Lactuca sativa L.

View Article and Find Full Text PDF

In the event of a radiologic catastrophe, endothelial cell and neutrophil dysfunction play important roles in tissue injury. Clinically available therapeutics for radiation-induced vascular injury are largely supportive. PKCδ was identified as a critical regulator of the inflammatory response, and its inhibition was shown to protect critical organs during sepsis.

View Article and Find Full Text PDF

Real-time monitoring of tumor drug delivery in vivo is a daunting challenge due to the heterogeneity and complexity of the tumor microenvironment. In this study, we developed a biomimetic microfluidic tumor microenvironment (bMTM) comprising co-culture of tumor and endothelial cells in a 3D environment. The platform consists of a vascular compartment featuring a network of vessels cultured with endothelial cells forming a complete lumen under shear flow in communication with 3D solid tumors cultured in a tumor compartment.

View Article and Find Full Text PDF

Studies of neonatal neural pathologies and development of appropriate therapeutics are hampered by a lack of relevant in vitro models of neonatal blood-brain barrier (BBB). To establish such a model, we have developed a novel blood-brain barrier on a chip (B3C) that comprises a tissue compartment and vascular channels placed side-by-side mimicking the three-dimensional morphology, size and flow characteristics of microvessels in vivo. Rat brain endothelial cells (RBEC) isolated from neonatal rats were seeded in the vascular channels of B3C and maintained under shear flow conditions, while neonatal rat astrocytes were cultured under static conditions in the tissue compartment of the B3C.

View Article and Find Full Text PDF

For well over a century, Hans Christian Gram's famous staining protocol has been the standard go-to diagnostic for characterizing unknown bacteria. Despite continuous and ubiquitous use, we now demonstrate that the current understanding of the molecular mechanism for this differential stain is largely incorrect. Using the fully complementary time-resolved methods: second-harmonic light-scattering and bright-field transmission microscopy, we present a real-time and membrane specific quantitative characterization of the bacterial uptake of crystal-violet (CV), the dye used in Gram's protocol.

View Article and Find Full Text PDF

We demonstrate functionalized spiroligomers that mimic the HDM2-bound conformation of the p53 activation domain. Spiroligomers are stereochemically defined, functionalized, spirocyclic monomers coupled through pairs of amide bonds to create spiro-ladder oligomers. Two series of spiroligomers were synthesized, one of structural analogs and one of stereochemical analogs, from which we identified compound 1, that binds HDM2 with a Kd value of 400 nM.

View Article and Find Full Text PDF

The frog nucleus isthmi (homolog of the mammalian parabigeminal nucleus) is a visually responsive tegmental structure that is reciprocally connected with the ipsilateral optic tectum; cells in nucleus isthmi also project to the contralateral optic tectum. We investigated the location of the isthmotectal cells that project ipsilaterally and contralaterally using three retrograde fluorescent label solutions: Alexa Fluor 488 10,000 mw dextran conjugate; Rhodamine B isothiocyanate; and Nuclear Yellow. Dye solutions were pressure-injected into separate sites in the superficial optic tectum.

View Article and Find Full Text PDF

The tumor suppressor p53 is an important cellular protein, which controls cell cycle progression. Phosphorylation is one of the mechanisms by which p53 is regulated. Here we report the interaction of p53 with another key regulator, cdk9, which together with cyclin T1 forms the positive transcription elongation complex, p-TEFb.

View Article and Find Full Text PDF