Publications by authors named "Joel Arrais"

Nuclear receptors (NRs) play a crucial role as biological targets in drug discovery. However, determining which compounds can act as endocrine disruptors and modulate the function of NRs with a reduced amount of candidate drugs is a challenging task. Moreover, the computational methods for NR-binding activity prediction mostly focus on a single receptor at a time, which may limit their effectiveness.

View Article and Find Full Text PDF

This article explores deep learning model design, drawing inspiration from the omnigenic model and genetic heterogeneity concepts, to improve schizophrenia prediction using genotype data. It introduces an innovative three-step approach leveraging neural networks' capabilities to efficiently handle genetic interactions. A locally connected network initially routes input data from variants to their corresponding genes.

View Article and Find Full Text PDF

The development of new drugs is a vital effort that has the potential to improve human health, well-being and life expectancy. Molecular property prediction is a crucial step in drug discovery, as it helps to identify potential therapeutic compounds. However, experimental methods for drug development can often be time-consuming and resource-intensive, with a low probability of success.

View Article and Find Full Text PDF

This study delves into the intricate genetic and clinical aspects of Schizophrenia, a complex mental disorder with uncertain etiology. Deep Learning (DL) holds promise for analyzing large genomic datasets to uncover new risk factors. However, based on reports of non-negligible misdiagnosis rates for SCZ, case-control cohorts may contain outlying genetic profiles, hindering compelling performances of classification models.

View Article and Find Full Text PDF

Due to the constant increase in cancer rates, the disease has become a leading cause of death worldwide, enhancing the need for its detection and treatment. In the era of personalized medicine, the main goal is to incorporate individual variability in order to choose more precisely which therapy and prevention strategies suit each person. However, predicting the sensitivity of tumors to anticancer treatments remains a challenge.

View Article and Find Full Text PDF

Prognosticating Amyotrophic Lateral Sclerosis (ALS) presents a formidable challenge due to patients exhibiting different onset sites, progression rates, and survival times. In this study, we have developed and evaluated Machine Learning (ML) algorithms that integrate Ensemble and Imbalance Learning techniques to classify patients into Short and Non-Short survival groups based on data collected during diagnosis. We aimed to identify individuals at high risk of mortality within 24 months of symptom onset through analysis of patient data commonly encountered in daily clinical practice.

View Article and Find Full Text PDF

The drug discovery process can be significantly improved by applying deep reinforcement learning (RL) methods that learn to generate compounds with desired pharmacological properties. Nevertheless, RL-based methods typically condense the evaluation of sampled compounds into a single scalar value, making it difficult for the generative agent to learn the optimal policy. This work combines self-attention mechanisms and RL to generate promising molecules.

View Article and Find Full Text PDF

In this work, we develop a method for generating targeted hit compounds by applying deep reinforcement learning and attention mechanisms to predict binding affinity against a biological target while considering stereochemical information. The novelty of this work is a deep model Predictor that can establish the relationship between chemical structures and their corresponding [Formula: see text] values. We thoroughly study the effect of different molecular descriptors such as ECFP4, ECFP6, SMILES and RDKFingerprint.

View Article and Find Full Text PDF

The design of compounds that target specific biological functions with relevant selectivity is critical in the context of drug discovery, especially due to the polypharmacological nature of most existing drug molecules. In recent years, in silico-based methods combined with deep learning have shown promising results in the de novo drug design challenge, leading to potential leads for biologically interesting targets. However, several of these methods overlook the importance of certain properties, such as validity rate and target selectivity, or simplify the generative process by neglecting the multi-objective nature of the pharmacological space.

View Article and Find Full Text PDF

The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational methods based on deep learning have been employed to improve in silico drug design methodologies. Nonetheless, the applied strategies have focused solely on the chemical aspect of the generation of compounds, disregarding the likely biological consequences for the organism's dynamics.

View Article and Find Full Text PDF

The accurate identification of Drug-Target Interactions (DTIs) remains a critical turning point in drug discovery and understanding of the binding process. Despite recent advances in computational solutions to overcome the challenges of in vitro and in vivo experiments, most of the proposed in silico-based methods still focus on binary classification, overlooking the importance of characterizing DTIs with unbiased binding strength values to properly distinguish primary interactions from those with off-targets. Moreover, several of these methods usually simplify the entire interaction mechanism, neglecting the joint contribution of the individual units of each binding component and the interacting substructures involved, and have yet to focus on more explainable and interpretable architectures.

View Article and Find Full Text PDF

Drug design is an important area of study for pharmaceutical businesses. However, low efficacy, off-target delivery, time consumption, and high cost are challenges and can create barriers that impact this process. Deep Learning models are emerging as a promising solution to perform de novo drug design, i.

View Article and Find Full Text PDF

Background: Several computational advances have been achieved in the drug discovery field, promoting the identification of novel drug-target interactions and new leads. However, most of these methodologies have been overlooking the importance of providing explanations to the decision-making process of deep learning architectures. In this research study, we explore the reliability of convolutional neural networks (CNNs) at identifying relevant regions for binding, specifically binding sites and motifs, and the significance of the deep representations extracted by providing explanations to the model's decisions based on the identification of the input regions that contributed the most to the prediction.

View Article and Find Full Text PDF

Dementia remains an extremely prevalent syndrome among older people and represents a major cause of disability and dependency. Alzheimer's disease (AD) accounts for the majority of dementia cases and stands as the most common neurodegenerative disease. Since age is the major risk factor for AD, the increase in lifespan not only represents a rise in the prevalence but also adds complexity to the diagnosis.

View Article and Find Full Text PDF

Motivation: The process of placing new drugs into the market is time-consuming, expensive and complex. The application of computational methods for designing molecules with bespoke properties can contribute to saving resources throughout this process. However, the fundamental properties to be optimized are often not considered or conflicting with each other.

View Article and Find Full Text PDF

In this work, we explore the potential of deep learning to streamline the process of identifying new potential drugs through the computational generation of molecules with interesting biological properties. Two deep neural networks compose our targeted generation framework: the Generator, which is trained to learn the building rules of valid molecules employing SMILES strings notation, and the Predictor which evaluates the newly generated compounds by predicting their affinity for the desired target. Then, the Generator is optimized through Reinforcement Learning to produce molecules with bespoken properties.

View Article and Find Full Text PDF

The discovery of potential Drug-Target Interactions (DTIs) is a determining step in the drug discovery and repositioning process, as the effectiveness of the currently available antibiotic treatment is declining. Although putting efforts on the traditional in vivo or in vitro methods, pharmaceutical financial investment has been reduced over the years. Therefore, establishing effective computational methods is decisive to find new leads in a reasonable amount of time.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) can be conveniently represented as networks, allowing the use of graph theory for their study. Network topology studies may reveal patterns associated with specific organisms. Here, we propose a new methodology to denoise PPI networks and predict missing links solely based on the network topology, the organization measurement (OM) method.

View Article and Find Full Text PDF

Summary: CroP is a data visualization application that focuses on the analysis of relational data that changes over time. While it was specifically designed for addressing the preeminent need to interpret large scale time series from gene expression studies, CroP is prepared to analyze datasets from multiple contexts. Multiple datasets can be uploaded simultaneously and viewed through dynamic visualization models, which are contained within flexible panels that allow users to adapt the workspace to their data.

View Article and Find Full Text PDF

The field of computational biology has become largely dependent on data visualization tools to analyze the increasing quantities of data gathered through the use of new and growing technologies. Aside from the volume, which often results in large amounts of noise and complex relationships with no clear structure, the visualization of biological data sets is hindered by their heterogeneity, as data are obtained from different sources and contain a wide variety of attributes, including spatial and temporal information. This requires visualization approaches that are able to not only represent various data structures simultaneously but also provide exploratory methods that allow the identification of meaningful relationships that would not be perceptible through data analysis algorithms alone.

View Article and Find Full Text PDF

Identifying ZIKV factors interfering with human host pathways represents a major challenge in understanding ZIKV tropism and pathogenesis. The integration of proteomic, gene expression and Protein-Protein Interactions (PPIs) established between ZIKV and human host proteins predicted by the OralInt algorithm identified 1898 interactions with medium or high score (≥0.7).

View Article and Find Full Text PDF

Unlabelled: The value of the molecular information obtained from saliva is dependent on the use of in vitro and in silico techniques. The main proteins of saliva when separated by capillary electrophoresis enable the establishment of individual profiles with characteristic patterns reflecting each individual phenotype. Different physiological or pathological conditions may be identified by specific protein profiles.

View Article and Find Full Text PDF

De novo experimental drug discovery is an expensive and time-consuming task. It requires the identification of drug-target interactions (DTIs) towards targets of biological interest, either to inhibit or enhance a specific molecular function. Dedicated computational models for protein simulation and DTI prediction are crucial for speed and to reduce the costs associated with DTI identification.

View Article and Find Full Text PDF

Motivation: Most methods for reconstructing response networks from high throughput data generate static models which cannot distinguish between early and late response stages.

Results: We present TimePath, a new method that integrates time series and static datasets to reconstruct dynamic models of host response to stimulus. TimePath uses an Integer Programming formulation to select a subset of pathways that, together, explain the observed dynamic responses.

View Article and Find Full Text PDF