Publications by authors named "Joel A Yates"

CBP/p300 is a master transcriptional coactivator that regulates gene activation by interacting with multiple transcriptional activators. Dysregulation of protein-protein interactions (PPIs) between the CBP/p300 KIX domain and its activators is implicated in a number of cancers, including breast, leukemia, and colorectal cancer. However, KIX is typically considered "undruggable" because of its shallow binding surfaces lacking both significant topology and promiscuous binding profiles.

View Article and Find Full Text PDF

Lysine-specific demethylase 1 (LSD1) is a histone demethylase that promotes stemness and cell survival in cancers such as prostate cancer. Most prostate malignancies are adenocarcinomas with luminal differentiation. However, some tumors undergo cellular reprogramming to a more lethal subset termed neuroendocrine prostate cancer (NEPC) with neuronal differentiation.

View Article and Find Full Text PDF

Brain metastases are the most lethal progression event, in part because the biological processes underpinning brain metastases are poorly understood. There is a paucity of realistic models of metastasis, as current murine models are slow to manifest metastasis. We set out to delineate metabolic and secretory modulators of brain metastases by utilizing two models consisting of microfluidic devices: 1) a blood brain niche (BBN) chip that recapitulates the blood-brain-barrier and niche; and 2) a migration chip that assesses cell migration.

View Article and Find Full Text PDF

The androgen receptor (AR) signaling pathway is critical for growth and differentiation of prostate cancer cells. For that reason, androgen deprivation therapy with medical or surgical castration is the principal treatment for metastatic prostate cancer. More recently, new potent AR signaling inhibitors (ARSIs) have been developed.

View Article and Find Full Text PDF

Metastases are the leading cause of death in cancer patients. RhoC, a member of the Rho GTPase family, has been shown to facilitate metastasis of aggressive breast cancer cells by influencing motility, invasion, and chemokine secretion, but as yet there is no integrated model of the precise mechanism of how RhoC promotes metastasis. A common phenotypic characteristic of metastatic cells influenced by these mechanisms is dysregulation of cell-cell junctions.

View Article and Find Full Text PDF

Purpose: Lineage plasticity in prostate cancer-most commonly exemplified by loss of androgen receptor (AR) signaling and a switch from a luminal to alternate differentiation program-is now recognized as a treatment resistance mechanism. Lineage plasticity is a spectrum, but neuroendocrine prostate cancer (NEPC) is the most virulent example. Currently, there are limited treatments for NEPC.

View Article and Find Full Text PDF

Inhibitors of transcriptional protein-protein interactions (PPIs) have high value both as tools and for therapeutic applications. The PPI network mediated by the transcriptional coactivator Med25, for example, regulates stress-response and motility pathways, and dysregulation of the PPI networks contributes to oncogenesis and metastasis. The canonical transcription factor binding sites within Med25 are large (∼900 Å) and have little topology, and thus, they do not present an array of attractive small-molecule binding sites for inhibitor discovery.

View Article and Find Full Text PDF

Context: In addition to genetic alterations, epigenetic alterations play a crucial role during prostate cancer progression. A better understanding of the epigenetic factors that promote prostate cancer progression may lead to the design of rational therapeutic strategies to target prostate cancer more effectively.

Objective: To systematically review recent literature on the role of epigenetic factors in prostate cancer and highlight key preclinical and translational data with epigenetic therapies.

View Article and Find Full Text PDF

It is often desirable to evaluate the ability of cells to move in an unrestricted manner in multiple directions without chemical gradients. By combining the standard radial migration assay with injection-molded gaskets and a rigid fixture, we have developed a highly reliable and sensitive method for observing and measuring radial cell migration. This method is adapted for use on high-throughput automated imaging systems.

View Article and Find Full Text PDF

Metabolic flux technology with the Seahorse bioanalyzer has emerged as a standard technique in cellular metabolism studies, allowing for simultaneous kinetic measurements of respiration and glycolysis. Methods to extend the utility and versatility of the metabolic flux assay would undoubtedly have immediate and wide-reaching impacts. Herein, we describe a platform that couples the metabolic flux assay with high-content fluorescence imaging to simultaneously provide means for normalization of respiration data with cell number; analyze cell cycle distribution; and quantify mitochondrial content, fragmentation state, membrane potential, and mitochondrial reactive oxygen species.

View Article and Find Full Text PDF

Neuroendocrine prostate cancer (NEPC) is the most virulent form of prostate cancer. Importantly, our recent work examining metastatic biopsy samples demonstrates NEPC is increasing in frequency. In contrast to prostate adenocarcinomas that express a luminal gene expression program, NEPC tumors express a neuronal gene expression program.

View Article and Find Full Text PDF

Purpose: There is a need for biomarkers of drug efficacy for targeted therapies in triple-negative breast cancer (TNBC). As a step toward this, we identify multi-omic molecular determinants of anti-TNBC efficacy in cell lines for a panel of oncology drugs.

Methods: Using 23 TNBC cell lines, drug sensitivity scores (DSS) were determined using a panel of investigational drugs and drugs approved for other indications.

View Article and Find Full Text PDF

In breast cancer, tumor hypoxia has been linked to poor prognosis and increased metastasis. Hypoxia activates transcriptional programs in cancer cells that lead to increased motility and invasion, as well as various metabolic changes. One of these metabolic changes, an increase in glycogen metabolism, has been further associated with protection from reactive oxygen species damage that may lead to premature senescence.

View Article and Find Full Text PDF

Tumor associated macrophages (TAMs) are increasingly recognized as major contributors to the metastatic progression of breast cancer and enriched levels of TAMs often correlate with poor prognosis. Despite our current advances it remains unclear which subset of M2-like macrophages have the highest capacity to enhance the metastatic program and which mechanisms regulate this process. Effective targeting of macrophages that aid cancer progression requires knowledge of the specific mechanisms underlying their pro-metastatic actions, as to avoid the anticipated toxicities from generalized targeting of macrophages.

View Article and Find Full Text PDF

Defective endocytosis and vesicular trafficking of signaling receptors has recently emerged as a multifaceted hallmark of malignant cells. Clathrin-coated pits (CCPs) display highly heterogeneous dynamics on the plasma membrane where they can take from 20 s to over 1 min to form cytosolic coated vesicles. Despite the large number of cargo molecules that traffic through CCPs, it is not well understood whether signaling receptors activated in cancer, such as epidermal growth factor receptor (EGFR), are regulated through a specific subset of CCPs.

View Article and Find Full Text PDF

Inflammatory breast cancer (IBC) is the most lethal form of breast cancer. All IBC patients have lymph node involvement and one-third of patients already have distant metastasis at diagnosis. This propensity for metastasis is a hallmark of IBC distinguishing it from less lethal non-inflammatory breast cancers (nIBC).

View Article and Find Full Text PDF

Inflammatory breast cancer (IBC) is an extremely lethal cancer that rapidly metastasizes. Although the molecular attributes of IBC have been described, little is known about the underlying metabolic features of the disease. Using a variety of metabolic assays, including (13)C tracer experiments, we found that SUM149 cells, the primary in vitro model of IBC, exhibit metabolic abnormalities that distinguish them from other breast cancer cells, including elevated levels of N-acetylaspartate, a metabolite primarily associated with neuronal disorders and gliomas.

View Article and Find Full Text PDF

The androgen receptor (AR) mediates the effect of androgens through its transcriptional function during both normal prostate development and in the emergence and progression of prostate cancer. AR is known to assemble coactivator complexes at target promoters to facilitate transcriptional activation in response to androgens. Here we identify the ATP-dependent chromatin remodeling factor chromodomain helicase DNA-binding protein 8 (CHD8) as a novel coregulator of androgen-responsive transcription.

View Article and Find Full Text PDF

Chromodomain, helicase, DNA-binding protein 8 (CHD8) is an ATP-dependent chromatin remodeling enzyme that has been demonstrated to exist within a large protein complex which includes WDR5, Ash2L, and RbBP5, members of the Mixed Lineage Leukemia (MLL) histone modifying complexes. Here we show that CHD8 relocalizes to the promoter of the MLL regulated gene HOXA2 upon gene activation. Depletion of CHD8 enhances HOXA2 expression under activating conditions.

View Article and Find Full Text PDF

Telomerase is essential for maintaining telomere length and chromosome stability in most eukaryotic organisms. The telomerase ribonucleoprotein complex consists of two essential components, the catalytic telomerase reverse transcriptase protein (TERT) and the intrinsic telomerase RNA. The sea squirts, as urochordates, occupy a key position in the phylogenetic tree of the chordates: they diverged from the other chordates just before the lineage of vertebrates, and thus provide special insight into the origin and evolution of vertebrate genes.

View Article and Find Full Text PDF