Publications by authors named "Joel A Swanson"

In metazoan cells, growth factors stimulate solute ingestion by pinocytosis. To examine the role of pinocytosis in cell growth, this study measured cell proliferation and the attendant rates of solute flux by pinocytosis in murine macrophages in response to the growth factor colony-stimulating factor-1 (CSF1). During CSF1-dependent growth in rich medium, macrophages internalized 72 percent of their cell volume in extracellular fluid every hour.

View Article and Find Full Text PDF

Macropinocytosis is a form of endocytosis in which cells engulf relatively large quantities of extracellular fluid through cup-shaped invaginations of the plasma membrane. New work shows that macropinosome closure occurs without a localized constriction of actin filaments, indicating that membrane tension drives cup closure.

View Article and Find Full Text PDF

The distinct movements of macropinosome formation and maturation have corresponding biochemical activities which occur in a defined sequence of stages and transitions between those stages. Each stage in the process is regulated by variously phosphorylated derivatives of phosphatidylinositol (PtdIns) which reside in the cytoplasmic face of the membrane lipid bilayer. PtdIns derivatives phosphorylated at the 3' position of the inositol moiety, called 3' phosphoinositides (3'PIs), regulate different stages of the sequence.

View Article and Find Full Text PDF

The internalization of solutes by macropinocytosis provides an essential route for nutrient uptake in many cells. Macrophages increase macropinocytosis in response to growth factors and other stimuli. To test the hypothesis that nutrient environments modulate solute uptake by macropinocytosis, this study analyzed the effects of extracellular amino acids on the accumulation of fluorescent fluid-phase probes in murine macrophages.

View Article and Find Full Text PDF

Macropinosomes are formed by shaping actin-rich plasma membrane ruffles into large intracellular organelles in a phosphatidylinositol 3-kinase (PI3K)-coordinated manner. Here, we utilize lattice lightsheet microscopy and image visualization methods to map the three-dimensional structure and dynamics of macropinosome formation relative to PI3K activity. We show that multiple ruffling morphologies produce macropinosomes and that the majority form through collisions of adjacent PI3K-rich ruffles.

View Article and Find Full Text PDF

Macrophages possess mechanisms for reinforcing the integrity of their endolysosomes against damage. This property, termed inducible renitence, was previously observed in murine macrophages stimulated with LPS, peptidoglycan, IFNγ, or TNFα, which suggested roles for renitence in macrophage resistance to infection by membrane-damaging pathogens. This study analyzed additional inducers of macrophage differentiation for their ability to increase resistance to lysosomal damage by membrane-damaging particles.

View Article and Find Full Text PDF

Alveolar macrophages (AMs) and epithelial cells (ECs) are the lone resident lung cells positioned to respond to pathogens at early stages of infection. Extracellular vesicles (EVs) are important vectors of paracrine signaling implicated in a range of (patho)physiologic contexts. Here we demonstrate that AMs, but not ECs, constitutively secrete paracrine activity localized to EVs which inhibits influenza infection of ECs in vitro and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Macropinocytosis is a form of endocytosis that allows large-scale uptake of fluids and nutrients, playing roles in various biological processes like immune responses and tumor growth regulation.
  • Researchers found that T cells also use macropinocytosis, especially when activated, to enhance their growth, even when amino acids are plentiful.
  • The process helps transport extracellular amino acids into a specific cell compartment, aiding in the activation of the mTORC1 pathway, which is crucial for T cell growth and indicates that macropinocytosis has broader implications for non-cancerous cell growth.
View Article and Find Full Text PDF

Defective biosynthesis of the phospholipid PI(3,5)P underlies neurological disorders characterized by cytoplasmic accumulation of large lysosome-derived vacuoles. To identify novel genetic causes of lysosomal vacuolization, we developed an assay for enlargement of the lysosome compartment that is amenable to cell sorting and pooled screens. We first demonstrated that the enlarged vacuoles that accumulate in fibroblasts lacking FIG4, a PI(3,5)P biosynthetic factor, have a hyperacidic pH compared to normal cells'.

View Article and Find Full Text PDF
Macropinosomes as units of signal transduction.

Philos Trans R Soc Lond B Biol Sci

February 2019

Macropinosome formation occurs as a localized sequence of biochemical activities and associated morphological changes, which may be considered a form of signal transduction leading to the construction of an organelle. Macropinocytosis may also convey information about the availability of extracellular nutrients to intracellular regulators of metabolism. Consistent with this idea, activation of the metabolic regulator mechanistic target of rapamycin complex-1 (mTORC1) in response to acute stimulation by growth factors and extracellular amino acids requires internalization of amino acids by macropinocytosis.

View Article and Find Full Text PDF

In fibroblasts, platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) stimulate the formation of actin-rich, circular dorsal ruffles (CDRs) and phosphatidylinositol 3-kinase (PI3K)-dependent phosphorylation of Akt. To test the hypothesis that CDRs increase synthesis of phosphorylated Akt1 (pAkt), we analyzed the contributions of CDRs to Akt phosphorylation in response to PDGF and EGF. CDRs appeared within several minutes of growth factor addition, coincident with a peak of pAkt.

View Article and Find Full Text PDF

Defective endocytosis and vesicular trafficking of signaling receptors has recently emerged as a multifaceted hallmark of malignant cells. Clathrin-coated pits (CCPs) display highly heterogeneous dynamics on the plasma membrane where they can take from 20 s to over 1 min to form cytosolic coated vesicles. Despite the large number of cargo molecules that traffic through CCPs, it is not well understood whether signaling receptors activated in cancer, such as epidermal growth factor receptor (EGFR), are regulated through a specific subset of CCPs.

View Article and Find Full Text PDF

Phagolysosome membrane rupture can trigger a maladaptive immune response that promotes tissue damage. In Science, Cantuti-Castelvetri et al. (2018) report that cholesterol-rich myelin debris overwhelms reverse cholesterol transport in aged phagocytes, leading to cholesterol crystal formation, damaged phagolysosomes, and limited tissue repair.

View Article and Find Full Text PDF

Weakly basic, poorly soluble chemical agents could be exploited as building blocks for constructing sophisticated molecular devices inside the cells of living organisms. Here, using experimental and computational approaches, we probed the relationship between the biological mechanisms mediating lysosomal ion homeostasis and the self-assembly of a weakly basic small molecule building block (clofazimine) into a functional, mechanopharmaceutical device (intracellular Crystal-Like Drug Inclusions - "CLDIs") in macrophage lysosomes. Physicochemical considerations indicate that the intralysosomal stabilization of the self-assembled mechanopharmaceutical device depends on the pH of the weakly basic building block and its affinity for chloride, both of which are consistent with the pH and chloride content of a physiological lysosomal microenvironment.

View Article and Find Full Text PDF

As professional phagocytes, macrophages are susceptible to endolysosomal membrane damage inflicted by the pathogens and noxious particles they ingest. Whether macrophages have mechanisms for limiting such damage is not well understood. Previously, we reported a phenomenon, termed "inducible renitence," in which lipopolysaccharide (LPS) activation of macrophages protected their endolysosomes against damage initiated by the phagocytosis of silica beads.

View Article and Find Full Text PDF

Extracellular vesicles, including exosomes and shed microvesicles (MVs), can be internalized by recipient cells to modulate function. Although the mechanism by which extracellular vesicles are internalized is incompletely characterized, it is generally considered to involve endocytosis and an initial surface-binding event. Furthermore, modulation of uptake by microenvironmental factors is largely unstudied.

View Article and Find Full Text PDF

Although growth factors and chemokines elicit different overall effects on cells-growth and chemotaxis, respectively-and activate distinct classes of cell-surface receptors, nonetheless, they trigger similar cellular activities and signaling pathways. The growth factor M-CSF and the chemokine CXCL12 both stimulate the endocytic process of macropinocytosis, and both activate the mechanistic target of rapamycin complex 1 (mTORC1), a protein complex that regulates cell metabolism. Recent studies of signaling by M-CSF in macrophages identified a role for macropinocytosis in the activation of mTORC1, in which delivery of extracellular amino acids into lysosomes via macropinocytosis was required for activation of mTORC1.

View Article and Find Full Text PDF

The rapid activation of the mechanistic target of rapamycin complex-1 (mTORC1) by growth factors is increased by extracellular amino acids through yet-undefined mechanisms of amino acid transfer into endolysosomes. Because the endocytic process of macropinocytosis concentrates extracellular solutes into endolysosomes and is increased in cells stimulated by growth factors or tumor-promoting phorbol esters, we analyzed its role in amino acid-dependent activation of mTORC1. Here, we show that growth factor-dependent activation of mTORC1 by amino acids, but not glucose, requires macropinocytosis.

View Article and Find Full Text PDF
Article Synopsis
  • JAK-STAT signaling is important for the effects of cytokines and growth factors, regulated by SOCS proteins, which have not been found outside cells until now.
  • Alveolar macrophages can secrete SOCS1 and SOCS3 through exosomes and microparticles, allowing them to inhibit STAT activation in neighboring alveolar epithelial cells.
  • Cigarette smoke decreases the secretion of these SOCS proteins, indicating a potential disruption in inflammatory signaling mechanisms during inflammation.
View Article and Find Full Text PDF

Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores.

View Article and Find Full Text PDF

The cellular movements that construct a macropinosome have a corresponding sequence of chemical transitions in the cup-shaped region of plasma membrane that becomes the macropinosome. To determine the relative positions of type I phosphatidylinositol 3-kinase (PI3K) and phospholipase C (PLC) in this pathway, we analyzed macropinocytosis in macrophages stimulated by the growth factor macrophage-colony-stimulating factor (M-CSF) and by the diacylglycerol (DAG) analog phorbol 12-myristate 13-acetate (PMA). In cells stimulated with M-CSF, microscopic imaging of fluorescent probes for intracellular lipids indicated that the PI3K product phosphatidylinositol (3,4,5)-trisphosphate (PIP3) appeared in cups just prior to DAG.

View Article and Find Full Text PDF

Upon ingestion by macrophages, Cryptococcus neoformans can survive and replicate intracellularly unless the macrophages become classically activated. The mechanism enabling intracellular replication is not fully understood; neither are the mechanisms that allow classical activation to counteract replication. C.

View Article and Find Full Text PDF

Cellular engulfment of particles, cells or solutes displaces large domains of plasma membrane into intracellular membranous vacuoles. This transfer of membrane is accompanied by major transitions of the phosphoinositide (PI) species that comprise the cytoplasmic face of membrane bilayers. Mapping of membrane PIs during engulfment reveals distinct patterns of protein and PI distributions associated with each stage of engulfment, which correspond with activities that regulate the actin cytoskeleton, membrane movements and vesicle secretion.

View Article and Find Full Text PDF