Publications by authors named "Joel A Hirsch"

Background: The β-adrenergic augmentation of cardiac contraction, by increasing the conductivity of L-type voltage-gated Ca1.2 channels, is of great physiological and pathophysiological importance. Stimulation of β-adrenergic receptors (βAR) activates protein kinase A (PKA) through separation of regulatory (PKAR) from catalytic (PKAC) subunits.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the protein Rad influences heart function during stress by affecting calcium ion influx and contraction strength.
  • It focuses on specific phosphorylation sites on Rad (Ser272 and Ser300) that modulate its interaction with voltage-gated calcium channels, which are crucial for increasing cardiac output.
  • The findings suggest that Rad's ability to detach from the membrane is essential for enhancing calcium currents during sympathetic nervous system activation, especially when the heart is responding to threats.
View Article and Find Full Text PDF

L-type voltage-gated Ca1.2 channels crucially regulate cardiac muscle contraction. Activation of β-adrenergic receptors (β-AR) augments contraction via protein kinase A (PKA)-induced increase of calcium influx through Ca1.

View Article and Find Full Text PDF

Inactivation of voltage-gated K (Kv) channels mostly occurs by fast N-type or/and slow C-type mechanisms. Here, we characterized a unique mechanism of inactivation gating comprising two inactivation states in a member of the Kv channel superfamily, Kv7.1.

View Article and Find Full Text PDF

mHsp60-mHsp10 assists the folding of mitochondrial matrix proteins without the negative ATP binding inter-ring cooperativity of GroEL-GroES. Here we report the crystal structure of an ATP (ADP:BeF-bound) ground-state mimic double-ring mHsp60-(mHsp10) football complex, and the cryo-EM structures of the ADP-bound successor mHsp60-(mHsp10) complex, and a single-ring mHsp60-mHsp10 half-football. The structures explain the nucleotide dependence of mHsp60 ring formation, and reveal an inter-ring nucleotide symmetry consistent with the absence of negative cooperativity.

View Article and Find Full Text PDF

Signaling cross talks between auxin, a regulator of plant development, and Ca2+, a universal second messenger, have been proposed to modulate developmental plasticity in plants. However, the underlying molecular mechanisms are largely unknown. Here, we report that in Arabidopsis roots, auxin elicits specific Ca2+ signaling patterns that spatially coincide with the expression pattern of auxin-regulated genes.

View Article and Find Full Text PDF

Objective: Two missense mutations in , an imprinted gene that encodes the alpha subunit of the voltage-gated potassium channel Kv7.1, cause autosomal dominant growth hormone deficiency and maternally inherited gingival fibromatosis. We evaluated endocrine features, birth size, and subsequent somatic growth of patients with long QT syndrome 1 (LQT1) due to loss-of-function mutations in .

View Article and Find Full Text PDF

Familial growth hormone deficiency provides an opportunity to identify new genetic causes of short stature. Here we combine linkage analysis with whole-genome resequencing in patients with growth hormone deficiency and maternally inherited gingival fibromatosis. We report that patients from three unrelated families harbor either of two missense mutations, c.

View Article and Find Full Text PDF

In the heart, co-assembly of Kv7.1 with KCNE1 produces the slow I potassium current, which repolarizes the cardiac action potential and mutations in human Kv7.1 and KCNE1 genes cause cardiac arrhythmias.

View Article and Find Full Text PDF

Voltage-gated potassium 7.1 (Kv7.1) channel and KCNE1 protein coassembly forms the slow potassium current I that repolarizes the cardiac action potential.

View Article and Find Full Text PDF

The Kv7 (KCNQ) channel family, comprising voltage-gated potassium channels, plays major roles in fine-tuning cellular excitability by reducing firing frequency and controlling repolarization. Kv7 channels have a unique intracellular C-terminal (CT) domain bound constitutively by calmodulin (CaM). This domain plays key functions in channel tetramerization, trafficking, and gating.

View Article and Find Full Text PDF

The modulation and regulation of voltage-gated Ca(2+) channels is affected by the pore-forming segments, the cytosolic parts of the channel, and interacting intracellular proteins. In this study we demonstrate a direct physical interaction between the N terminus (NT) and C terminus (CT) of the main subunit of the L-type Ca(2+) channel CaV1.2, α1C, and explore the importance of this interaction for the regulation of the channel.

View Article and Find Full Text PDF

The restoration of function after oncologic surgery of the oral cavity constitutes one of the major challenges facing head and neck oncology. Within the general objective of securing esthetic as well as functional reconstructions, dental rehabilitation is crucial for achieving a good outcome. Adequate dental rehabilitation allows the patient to chew food and considerably improves speech and swallowing.

View Article and Find Full Text PDF

Kv7 channels tune neuronal and cardiomyocyte excitability. In addition to the channel membrane domain, they also have a unique intracellular C-terminal (CT) domain, bound constitutively to calmodulin (CaM). This CT domain regulates gating and tetramerization.

View Article and Find Full Text PDF

The COP9 signalosome protein complex has a central role in the regulation of development of multicellular organisms. While the function of this complex in ubiquitin-mediated protein degradation is well established, results over the past few years have hinted that the COP9 signalosome may function more broadly in the regulation of gene expression. Here, using DamID technology, we show that COP9 signalosome subunit 7 functionally associates with a large number of genomic loci in the Drosophila genome, and show that the expression of many genes within these loci is COP9 signalosome-dependent.

View Article and Find Full Text PDF

KCNQ1 and KCNE1 co-assembly generates the I(KS) K(+) current, which is crucial to the cardiac action potential repolarization. Mutations in their corresponding genes cause long QT syndrome (LQT) and atrial fibrillation. The A-kinase anchor protein, yotiao (also known as AKAP9), brings the I(KS) channel complex together with signaling proteins to achieve regulation upon β1-adrenergic stimulation.

View Article and Find Full Text PDF
Article Synopsis
  • RGK proteins are part of the Ras superfamily and interact with Ca2+ channel β subunits, affecting voltage-gated Ca2+ channel function and various cellular processes.
  • Researchers found RGK-like homologs in different animal species, including zebrafish and fruit flies, which also reduced Ca2+ current density when expressed in mammalian neurons.
  • Sequence comparisons indicate that key features of RGK proteins have been conserved throughout evolution, suggesting their ability to modify Ca2+ channel function originated over 550 million years ago before the split between protostomes and deuterostomes.
View Article and Find Full Text PDF

Accumulation of amyloid-β peptides (Aβ), the proteolytic products of the amyloid precursor protein (APP), induces a variety of synaptic dysfunctions ranging from hyperactivity to depression that are thought to cause cognitive decline in Alzheimer's disease. While depression of synaptic transmission has been extensively studied, the mechanisms underlying synaptic hyperactivity remain unknown. Here, we show that Aβ40 monomers and dimers augment release probability through local fine-tuning of APP-APP interactions at excitatory hippocampal boutons.

View Article and Find Full Text PDF

DOC2B (double-C2 domain) protein is thought to be a high-affinity Ca(2+) sensor for spontaneous and asynchronous neurotransmitter release. To elucidate the molecular features underlying its physiological role, we determined the crystal structures of its isolated C2A and C2B domains and examined their Ca(2+)-binding properties. We further characterized the solution structure of the tandem domains (C2AB) using small-angle X-ray scattering.

View Article and Find Full Text PDF

In eukaryotic Na(+)/Ca(2+) exchangers (NCX) the Ca(2+) binding CBD1 and CBD2 domains form a two-domain regulatory tandem (CBD12). An allosteric Ca(2+) sensor (Ca3-Ca4 sites) is located on CBD1, whereas CBD2 contains a splice-variant segment. Recently, a Ca(2+)-driven interdomain switch has been described, albeit how it couples Ca(2+) binding with signal propagation remains unclear.

View Article and Find Full Text PDF

Voltage-dependent calcium channels (CaV) enable the inward flow of calcium currents for a wide range of cells. CaV1 and CaV2 subtype α1 subunits form the conducting pore using four repeated membrane domains connected by intracellular linkers. The domain I-II linker connects to the membrane gate (IS6), forming an α-helix, and is bound to the CaVβ subunit.

View Article and Find Full Text PDF

CaV1.2 interacts with the Ca(2+) sensor proteins, calmodulin (CaM) and calcium-binding protein 1 (CaBP1), via multiple, partially overlapping sites in the main subunit of CaV1.2, α1C.

View Article and Find Full Text PDF

The COP9 signalosome (CSN) is an evolutionarily conserved multi-protein complex that interfaces with the ubiquitin-proteasome pathway and plays critical developmental roles in both animals and plants. Although some subunits are present only in an ∼320-kDa complex-dependent form, other subunits are also detected in configurations distinct from the 8-subunit holocomplex. To date, the only known biochemical activity intrinsic to the complex, deneddylation of the Cullin subunits from Cullin-RING ubiquitin ligases, is assigned to CSN5.

View Article and Find Full Text PDF

Ca(V) channels are multi-subunit protein complexes that enable inward cellular Ca(2+) currents in response to membrane depolarization. We recently described structure-function studies of the intracellular α1 subunit domain I-II linker, directly downstream of domain IS6. The results show the extent of the linker's helical structure to be subfamily dependent, as dictated by highly conserved primary sequence differences.

View Article and Find Full Text PDF