Upper-limb exoskeletons are gaining traction in industrial work environments. However, other than advertised general specifications (e.g.
View Article and Find Full Text PDFJ Electromyogr Kinesiol
December 2014
The effects of whole body vibration exposure on the neuromuscular responses following inertial-based trunk perturbations were examined. Kinematic and surface EMG (sEMG) data were collected while subjects were securely seated on a robotic platform. Participants were either exposed to 10 min of vibration or not, which was followed by sudden inertial trunk perturbations with and without timing and direction knowledge.
View Article and Find Full Text PDFJ Electromyogr Kinesiol
December 2013
The purpose of this research was to investigate the contributions of individual muscles to joint rotational stiffness and total joint rotational stiffness about the lumbar spine's L(4-5) joint prior to, and following, sudden dynamic lateral perturbations to the trunk. Kinematic and surface EMG data were collected while subjects maintained a kneeling posture on a robotic platform, while restrained so that motions caused by the perturbation were transferred to the pelvis, causing motion of the trunk and head. The robotic platform caused sudden inertial trunk lateral perturbations to the right or left, with or without timing and direction knowledge.
View Article and Find Full Text PDFThe purpose of this study was to investigate the contribution of individual muscles (MJRSm) to total joint rotational stiffness (MJRST) about the lumbar spine's L4-5 joint prior to, and following, sudden dynamic flexion or extension perturbations to the trunk. We collected kinematic and surface electromyography (sEMG) data while subjects maintained a kneeling posture on a parallel robotic platform, with their pelvis constrained by a harness. The parallel robotic platform caused sudden inertial trunk flexion or extension perturbations, with and without the subjects being aware of the timing and direction.
View Article and Find Full Text PDFPrevious research has suggested that muscle forces, generated by reflexes, contribute to joint stability prior to the more coordinated voluntary muscle forces. The purpose of the current study was to quantify the behaviour of the leg muscles, through the calculation of individual muscle contributions to joint rotational impedance (MJRI), with a specific interest in the neuromuscular contribution in the period following shortly after a sudden knee extension perturbation. The knee was selected as an in vivo system to represent an inverted pendulum model.
View Article and Find Full Text PDF