The medical psychostimulant methylphenidate (MP) is used to treat attention-deficit hyperactivity disorder and recreationally as a "cognitive enhancer". MP is a dopamine reuptake inhibitor, but does not affect serotonin. Serotonin contributes to addiction-related gene regulation and behavior.
View Article and Find Full Text PDFDopamine and serotonin in the basal ganglia interact in a bidirectional manner. On the one hand, serotonin (5-HT) receptors regulate the effects of dopamine agonists on several levels, ranging from molecular signaling to behavior. These interactions include 5-HT receptor-mediated facilitation of dopamine receptor-induced gene regulation in striatal output pathways, which involves the 5-HT1B receptor and others.
View Article and Find Full Text PDFDrug combinations that include a psychostimulant such as methylphenidate (Ritalin) and a selective serotonin reuptake inhibitor such as fluoxetine are indicated in several medical conditions. Co-exposure to these drugs also occurs with "cognitive enhancer" use by individuals treated with selective serotonin reuptake inhibitors. Methylphenidate, a dopamine reuptake inhibitor, by itself produces some addiction-related gene regulation in the striatum.
View Article and Find Full Text PDFUse of psychostimulants such as methylphenidate (Ritalin) in medical treatments and as cognitive enhancers in the healthy is increasing. Methylphenidate produces some addiction-related gene regulation in animal models. Recent findings show that combining selective serotonin reuptake inhibitor (SSRI) antidepressants such as fluoxetine with methylphenidate potentiates methylphenidate-induced gene regulation.
View Article and Find Full Text PDFDrug combinations that include the psychostimulant methylphenidate plus a selective serotonin reuptake inhibitor (SSRI) such as fluoxetine are increasingly used in children and adolescents. For example, this combination is indicated in the treatment of attention-deficit/hyperactivity disorder and depression comorbidity and other mental disorders. Such co-exposure also occurs in patients on SSRIs who use methylphenidate as a cognitive enhancer.
View Article and Find Full Text PDFConcomitant therapies combining psychostimulants such as methylphenidate and selective serotonin reuptake inhibitors (SSRIs) are used to treat several mental disorders, including attention-deficit hyperactivity disorder/depression comorbidity. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone induces gene regulation that mimics partly effects of cocaine, consistent with some addiction liability.
View Article and Find Full Text PDFCorticostriatal circuits mediate various aspects of goal-directed behavior and are critically important for basal ganglia-related disorders. Activity in these circuits is regulated by the endocannabinoid system via stimulation of CB1 cannabinoid receptors. CB1 receptors are highly expressed in projection neurons and select interneurons of the striatum, but expression levels vary considerably between different striatal regions (functional domains).
View Article and Find Full Text PDFCannabis use during adolescence is associated with an increased risk for schizophrenia and other disorders. The neuronal basis is unclear, but prefrontal cortical mechanisms have been implicated. Here, we investigated developmental changes in the endocannabinoid system by assessing expression and function of the CB1 cannabinoid receptor in prefrontal and other cortical areas in juvenile (postnatal day 25, P25), adolescent (P40), and adult (P70) rats.
View Article and Find Full Text PDFHuman imaging studies show that psychostimulants such as cocaine produce functional changes in several areas of cortex and striatum. These may reflect neuronal changes related to addiction. We employed gene markers (zif 268 and homer 1a) that offer a high anatomical resolution to map cocaine-induced changes in 22 cortical areas and 23 functionally related striatal sectors, in order to determine the corticostriatal circuits altered by repeated cocaine exposure (25 mg/kg, 5 days).
View Article and Find Full Text PDFPsychostimulants and other dopamine agonists produce molecular changes in neurons of cortico-basal ganglia-cortical circuits, and such neuronal changes are implicated in behavioural disorders. Methylphenidate, a psychostimulant that causes dopamine overflow (among other effects), alters gene regulation in neurons of the striatum. The present study compared the effects of acute and repeated methylphenidate treatment on cortical and striatal gene regulation in adolescent rats.
View Article and Find Full Text PDF