Publications by authors named "Joel A Bergman"

Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties.

View Article and Find Full Text PDF

Introduction: Tau pathology is associated with a number of age-related neurodegenerative disorders. Few treatments have been demonstrated to diminish the impact of tau pathology in mouse models and none are yet effective in humans. Histone deacetylase 6 (HDAC6) is an enzyme that removes acetyl groups from cytoplasmic proteins, rather than nuclear histones.

View Article and Find Full Text PDF

This Perspective provides an in depth look at the numerous disease states in which histone deacetylase 6 (HDAC6) has been implicated. The physiological pathways, protein-protein interactions, and non-histone substrates relating to different pathological conditions are discussed with regard to HDAC6. Furthermore, the compounds and methods used to modulate HDAC6 activity are profiled.

View Article and Find Full Text PDF

The incidence of malignant melanoma has dramatically increased in recent years thus requiring the need for improved therapeutic strategies. In our efforts to design selective histone deactylase inhibitors (HDACI), we discovered that the aryl urea 1 is a modestly potent yet nonselective inhibitor. Structure-activity relationship studies revealed that adding substituents to the nitrogen atom of the urea so as to generate compounds bearing a branched linker group results in increased potency and selectivity for HDAC6.

View Article and Find Full Text PDF

We report the design and synthesis of novel FTPA-triazole compounds as potent inhibitors of isoprenylcysteine carboxyl methyltransferase (Icmt), through a focus on thioether and isoprenoid mimetics. These mimetics were coupled utilizing a copper-assisted cycloaddition to assemble the potential inhibitors. Using the resulting triazole from the coupling as an isoprenyl mimetic resulted in the biphenyl substituted FTPA triazole 10n.

View Article and Find Full Text PDF

Inhibition of isoprenylcysteine carboxyl methyltransferase (Icmt) offers a promising strategy for K-Ras driven cancers. We describe the synthesis and inhibitory activity of substrate-based analogs derived from several novel scaffolds. Modifications of both the prenyl group and thioether of N-acetyl-S-farnesyl-L-cysteine (AFC), a substrate for human Icmt (hIcmt), have resulted in low micromolar inhibitors of Icmt and have given insights into the nature of the prenyl binding site of hIcmt.

View Article and Find Full Text PDF