Publications by authors named "Joe Wandy"

Motivation: Liquid Chromatography Tandem Mass Spectrometry experiments aim to produce high-quality fragmentation spectra, which can be used to annotate metabolites. However, current Data-Dependent Acquisition approaches may fail to collect spectra of sufficient quality and quantity for experimental outcomes, and extend poorly across multiple samples by failing to share information across samples or by requiring manual expert input.

Results: We present TopNEXt, a real-time scan prioritization framework that improves data acquisition in multi-sample Liquid Chromatography Tandem Mass Spectrometry metabolomics experiments.

View Article and Find Full Text PDF

Data-Dependent and Data-Independent Acquisition modes (DDA and DIA, respectively) are both widely used to acquire MS2 spectra in untargeted liquid chromatography tandem mass spectrometry (LC-MS/MS) metabolomics analyses. Despite their wide use, little work has been attempted to systematically compare their MS/MS spectral annotation performance in untargeted settings due to the lack of ground truth and the costs involved in running a large number of acquisitions. Here, we present a systematic comparison of these two acquisition methods in untargeted metabolomics by extending our Virtual Metabolomics Mass Spectrometer (ViMMS) framework with a DIA module.

View Article and Find Full Text PDF

Background: An increasing number of studies now produce multiple omics measurements that require using sophisticated computational methods for analysis. While each omics data can be examined separately, jointly integrating multiple omics data allows for deeper understanding and insights to be gained from the study. In particular, data integration can be performed horizontally, where biological entities from multiple omics measurements are mapped to common reactions and pathways.

View Article and Find Full Text PDF

Specialised metabolites from microbial sources are well-known for their wide range of biomedical applications, particularly as antibiotics. When mining paired genomic and metabolomic data sets for novel specialised metabolites, establishing links between Biosynthetic Gene Clusters (BGCs) and metabolites represents a promising way of finding such novel chemistry. However, due to the lack of detailed biosynthetic knowledge for the majority of predicted BGCs, and the large number of possible combinations, this is not a simple task.

View Article and Find Full Text PDF

Tandem mass spectrometry (LC-MS/MS) is widely used to identify unknown ions in untargeted metabolomics. Data-dependent acquisition (DDA) chooses which ions to fragment based upon intensities observed in MS1 survey scans and typically only fragments a small subset of the ions present. Despite this inefficiency, relatively little work has addressed the development of new DDA methods, partly due to the high overhead associated with running the many extracts necessary to optimize approaches in busy MS facilities.

View Article and Find Full Text PDF

Related metabolites can be grouped into sets in many ways, e.g., by their participation in series of chemical reactions (forming metabolic pathways), or based on fragmentation spectral similarities or shared chemical substructures.

View Article and Find Full Text PDF

Liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) is widely used in identifying small molecules in untargeted metabolomics. Various strategies exist to acquire MS/MS fragmentation spectra; however, the development of new acquisition strategies is hampered by the lack of simulators that let researchers prototype, compare, and optimize strategies before validations on real machines. We introduce Virtual Metabolomics Mass Spectrometer (ViMMS), a metabolomics LC-MS/MS simulator framework that allows for scan-level control of the MS2 acquisition process in silico.

View Article and Find Full Text PDF

Metabolomics has started to embrace computational approaches for chemical interpretation of large data sets. Yet, metabolite annotation remains a key challenge. Recently, molecular networking and MS2LDA emerged as molecular mining tools that find molecular families and substructures in mass spectrometry fragmentation data.

View Article and Find Full Text PDF

Complex metabolite mixtures are challenging to unravel. Mass spectrometry (MS) is a widely used and sensitive technique for obtaining structural information of complex mixtures. However, just knowing the molecular masses of the mixture's constituents is almost always insufficient for confident assignment of the associated chemical structures.

View Article and Find Full Text PDF

Motivation: Mathematical modelling based on ordinary differential equations (ODEs) is widely used to describe the dynamics of biological systems, particularly in systems and pathway biology. Often the kinetic parameters of these ODE systems are unknown and have to be inferred from the data. Approximate parameter inference methods based on gradient matching (which do not require performing computationally expensive numerical integration of the ODEs) have been getting popular in recent years, but many implementations are difficult to run without expert knowledge.

View Article and Find Full Text PDF

Motivation: We recently published MS2LDA, a method for the decomposition of sets of molecular fragment data derived from large metabolomics experiments. To make the method more widely available to the community, here we present ms2lda.org, a web application that allows users to upload their data, run MS2LDA analyses and explore the results through interactive visualizations.

View Article and Find Full Text PDF

Summary: The Polyomics integrated Metabolomics Pipeline (PiMP) fulfils an unmet need in metabolomics data analysis. PiMP offers automated and user-friendly analysis from mass spectrometry data acquisition to biological interpretation. Our key innovations are the Summary Page, which provides a simple overview of the experiment in the format of a scientific paper, containing the key findings of the experiment along with associated metadata; and the Metabolite Page, which provides a list of each metabolite accompanied by 'evidence cards', which provide a variety of criteria behind metabolite annotation including peak shapes, intensities in different sample groups and database information.

View Article and Find Full Text PDF

In untargeted metabolomics approaches, the inability to structurally annotate relevant features and map them to biochemical pathways is hampering the full exploitation of many metabolomics experiments. Furthermore, variable metabolic content across samples result in sparse feature matrices that are statistically hard to handle. Here, we introduce MS2LDA+ that tackles both above-mentioned problems.

View Article and Find Full Text PDF

The potential of untargeted metabolomics to answer important questions across the life sciences is hindered because of a paucity of computational tools that enable extraction of key biochemically relevant information. Available tools focus on using mass spectrometry fragmentation spectra to identify molecules whose behavior suggests they are relevant to the system under study. Unfortunately, fragmentation spectra cannot identify molecules in isolation but require authentic standards or databases of known fragmented molecules.

View Article and Find Full Text PDF

Motivation: The combination of liquid chromatography and mass spectrometry (LC/MS) has been widely used for large-scale comparative studies in systems biology, including proteomics, glycomics and metabolomics. In almost all experimental design, it is necessary to compare chromatograms across biological or technical replicates and across sample groups. Central to this is the peak alignment step, which is one of the most important but challenging preprocessing steps.

View Article and Find Full Text PDF

Motivation: The use of liquid chromatography coupled to mass spectrometry has enabled the high-throughput profiling of the metabolite composition of biological samples. However, the large amount of data obtained can be difficult to analyse and often requires computational processing to understand which metabolites are present in a sample. This article looks at the dual problem of annotating peaks in a sample with a metabolite, together with putatively annotating whether a metabolite is present in the sample.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionq0fgt7la2l9jjd9o4k55uvjba6q2oefn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once