Phytoplankton and biotoxin monitoring programmes have been implemented in many countries to protect human health and to mitigate the impacts of harmful algal blooms (HABs) on the aquaculture industry. Several amphidomatacean species have been confirmed in Irish coastal waters, including the azaspiracid-producing species Azadinium spinosum and Amphidoma languida. Biogeographic distribution studies have been hampered by the fact that these small, armoured dinoflagellates share remarkably similar morphologies when observed by light microscopy.
View Article and Find Full Text PDFThere is increasing concern that accelerating environmental change attributed to human-induced warming of the planet may substantially alter the patterns, distribution and intensity of Harmful Algal Blooms (HABs). Changes in temperature, ocean acidification, precipitation, nutrient stress or availability, and the physical structure of the water column all influence the productivity, composition, and global range of phytoplankton assemblages, but large uncertainty remains about how integration of these climate drivers might shape future HABs. Presented here are the collective deliberations from a symposium on HABs and climate change where the research challenges to understanding potential linkages between HABs and climate were considered, along with new research directions to better define these linkages.
View Article and Find Full Text PDFHarmful algal blooms (HABs) are a major global concern due to their propensity to cause environmental damage, healthcare issues and economic losses. In particular, the presence of toxic phytoplankton is a cause for concern. Current HAB monitoring programs often involve laborious laboratory-based analysis at a high cost and with long turnaround times.
View Article and Find Full Text PDFThis study investigated the application of a three-dimensional physical hydrodynamic model in a harmful algal bloom forecast system for Bantry Bay, southwest Ireland. Modelled oceanographic conditions were studied and used to help understand observed changes in the chemical and biological patterns from the national biotoxins and phytoplankton monitoring program. The study focused on two toxic events in 2013.
View Article and Find Full Text PDFIn the summer of 2005 an exceptional bloom of the dinoflagellate Karenia mikimotoi occurred along Ireland's Atlantic seaboard and was associated with the mass mortality of both benthic and pelagic marine life. Oxygen depletion, cellular toxicity and physical smothering, are considered to be the main factors involved in mortality. In this paper we use a theoretical approach based on stoichiometry (the Anderson ratio) and an average K.
View Article and Find Full Text PDFA 3D primitive equation coastal ocean model for southwest Ireland, called the Bantry Bay model, was developed and implemented operationally. Validated model outputs have multiple uses. One of the incentives to develop the model was to explore the possible transport pathways that carry harmful algae blooms (HAB) into Bantry Bay.
View Article and Find Full Text PDFReasons for the emergent interest in HABs are abundant, including concerns associated with human health, adverse effects on biological resources, economic losses attributed to recreation, tourism and seafood related industries, and the cost of maintaining public advisory services and monitoring programs for shellfish toxins and water quality. The impact of HABs can potentially be mitigated by early warning of their development. In this regard the project ASIMUTH (Applied Simulations and Integrated Modelling for the Understanding of Toxic and Harmful algal blooms) was borne in order to develop short term HAB alert systems for Atlantic Europe.
View Article and Find Full Text PDFThe "Applied Simulations and Integrated Modelling for the Understanding of Harmful Algal Blooms" (Asimuth) project sought to develop a harmful algal bloom (HAB) alert system for Atlantic Europe. This was approached by combining, at a national or regional level, regulatory monitoring phytoplankton and biotoxin data with satellite remote sensing and other information on current marine conditions, coupled with regional scale models that included a representation of HAB transport. Synthesis of these products was achieved by expert interpretation within HAB risk alert bulletins that were prepared on a regular basis (typically weekly) for use by the aquaculture industry.
View Article and Find Full Text PDFThe consumption of marine mussels as popular seafood has increased steadily over the past decades. Awareness of mussel derived molecules, that promote health, has contributed to extensive research efforts in that field. This review highlights the bioactive potential of mussel components from species of the genus Mytilus (e.
View Article and Find Full Text PDFMar Biotechnol (NY)
October 2010
Diarrhetic shellfish toxin-producing Dinophysis species occur in Irish coastal waters throughout the year. Dinophysis acuta and Dinophysis acuminata are the most commonly occurring species and are responsible for the majority of closures of Irish mussel farms. This study describes the development of a qualitative real-time polymerase chain reaction (PCR) assay for identification of D.
View Article and Find Full Text PDFAzaspiracids (AZAs) are a group of lipophilic polyether toxins that were discovered in shellfish from Ireland in 1995, following a food poisoning incident. Both the limited availability of pure AZAs and the co-occurrence in shellfish of other toxins in combination with AZAs have so far prevented an in-depth evaluation of the performance of the EU reference test, the mouse bioassay (MBA), for this toxin group at the regulatory limit. The present study evaluated the performance of the mouse bioassay at the example of a mussel tissue homogenate, naturally contaminated with AZAs, diluted with uncontaminated tissues to appropriate concentration levels.
View Article and Find Full Text PDFThis paper presents a description of three of the proposed phytoplankton indices under investigation as part of a classification framework for UK and ROI marine waters. The three indices proposed for the classification process are (i) phytoplankton biomass measured as chlorophyll, (ii) the frequency of elevated phytoplankton counts measuring individual species and total cell counts and (iii) Seasonal progression of phytoplankton functional groups through the year. Phytoplankton biomass is calculated by a 90th percentile measurement of chlorophyll over the growing season (April to September) compared to a predetermined reference value.
View Article and Find Full Text PDF