Publications by authors named "Joe Sarkis"

Despite the implementation of lifesaving newborn screening programs and a galactose-restricted diet, many patients with classic galactosemia develop long-term debilitating neurological deficits and primary ovarian insufficiency. Previously, we showed that the administration of human mRNA predominantly expressed in the gene-trapped mouse liver augmented the expression of hepatic GALT activity, which decreased not only galactose-1 phosphate (gal-1P) in the liver but also peripheral tissues. Since each peripheral tissue requires distinct methods to examine the biomarker and/or GALT effect, this highlights the necessity for alternative strategies to evaluate the overall impact of therapies.

View Article and Find Full Text PDF
Article Synopsis
  • Glycogen Storage Disease 1a (GSD1a) is a rare genetic disorder caused by a deficiency in the enzyme glucose 6-phosphatase (G6Pase-α), leading to severe low blood sugar and liver complications like tumors.
  • Current treatments focus on managing hypoglycemia but do not prevent serious liver issues, and options like enzyme replacement or gene therapy face significant hurdles.
  • Researchers have explored a new treatment using lipid nanoparticles to deliver engineered mRNAs for G6Pase-α, showing promise in a mouse model that mimics the disease, suggesting a potential breakthrough for GSD1a patients.
View Article and Find Full Text PDF

Biological membranes are highly dynamic in their ability to orchestrate vital mechanisms including cellular protection, organelle compartmentalization, cellular biomechanics, nutrient transport, molecular/enzymatic recognition, and membrane fusion. Controlling lipid composition of different membranes allows cells to regulate their membrane characteristics, thus modifying their physical properties to permit specific protein interactions and drive structural function (membrane deformation facilitates vesicle budding and fusion) and signal transduction. Yet, how lipids control protein structure and function is still poorly understood and needs systematic investigation.

View Article and Find Full Text PDF

Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the major lipid components of photosynthetic membranes, and hence the most abundant lipids in the biosphere. They are essential for assembly and function of the photosynthetic apparatus. In Arabidopsis, the first step of galactolipid synthesis is catalyzed by MGDG synthase 1 (MGD1), which transfers a galactosyl residue from UDP-galactose to diacylglycerol (DAG).

View Article and Find Full Text PDF

Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed.

View Article and Find Full Text PDF

VIsinin-LIke Proteins (VILIPs) are a subfamily of the Neuronal Calcium Sensor (NCS) proteins, which possess both N-myristoylation and EF-hand motifs allowing for a putative 'calcium-myristoyl switch' regulation mechanism. It has previously been established that myristoyl conjugation increases the affinity of proteins for membranes, but, in many cases, a second feature such as a cluster of positively-charged residues is needed for stable membrane binding. The interaction of two members of this family, VILIP-1 and VILIP-3, with Langmuir monolayers as membrane models has been investigated in order to study the effects of both myristoylation and the highly basic region containing conserved poly-lysine residues on membrane association kinetics and binding properties.

View Article and Find Full Text PDF

Mono- and digalactosyldiacylglycerol (MGDG and DGDG) are the most abundant lipids of photosynthetic membranes (thylakoids). In Arabidopsis green tissues, MGD1 is the main enzyme synthesizing MGDG. This monotopic enzyme is embedded in the inner envelope membrane of chloroplasts.

View Article and Find Full Text PDF

Cell mechanisms are actively modulated by membrane dynamics. We studied the dynamics of a first-stage biomimetic system by Fluorescence Recovery After Patterned Photobleaching. Using this simple biomimetic system, constituted by α -hemolysin from Staphylococcus aureus inserted as single heptameric pore or complexes of pores in a glass-supported DMPC bilayer, we observed true diffusion behavior, with no immobile fraction.

View Article and Find Full Text PDF

Dystrophin is an essential part of a membrane protein complex that provides flexible support to muscle fiber membranes. Loss of dystrophin function leads to membrane fragility and muscle-wasting disease. Given the importance of cytoskeletal interactions in strengthening the sarcolemma, we have focused on actin-binding domain 2 of human dystrophin, constituted by repeats 11 to 15 of the central domain (DYS R11-15).

View Article and Find Full Text PDF

Dystrophin is essential to skeletal muscle function and confers resistance to the sarcolemma by interacting with cytoskeleton and membrane. In the present work, we characterized the behavior of dystrophin 11-15 (DYS R11-15), five spectrin-like repeats from the central domain of human dystrophin, with lipids. DYS R11-15 displays an amphiphilic character at the liquid/air interface while maintaining its secondary α-helical structure.

View Article and Find Full Text PDF

The K4 peptide (KKKKPLFGLFFGLF) was recently demonstrated to display good antimicrobial activities against various bacterial strains and thus represents a candidate for the treatment of multiple-drug resistant infections. In this study, we use various techniques to study K4 behaviour in different media: water, solutions of detergent micelles, phospholipid monolayers and suspension of phospholipid vesicles. First, self-assembly of the peptide in water is observed, leading to the formation of spherical objects around 10nm in diameter.

View Article and Find Full Text PDF