Publications by authors named "Joe S Cheng"

Article Synopsis
  • Objective: This study explores the potential of using passband balanced steady-state free precession (bSSFP) imaging for resting-state functional MRI (rsfMRI) instead of conventional gradient-echo echo planar imaging (GE-EPI), which can have issues like image distortion and signal dropout.
  • Methods: rsfMRI was performed on humans and rats using bSSFP imaging at high field strengths (3 T for humans and 7 T for rats), observing resting-state networks (RSNs) with independent component analysis to compare bSSFP and GE-EPI images.
  • Results: bSSFP images showed RSNs that were comparable in quality to those from GE-EPI, with better anatomical alignment and reduced distortion, particularly in
View Article and Find Full Text PDF

Rapid detection of deviant sounds is a crucial property of the auditory system because it increases the saliency of biologically important, unexpected sounds. The oddball paradigm in which a deviant sound is randomly interspersed among a train of standard sounds has been traditionally used to study this property in mammals. Currently, most human studies have only revealed the involvement of cortical regions in this property.

View Article and Find Full Text PDF

The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity.

View Article and Find Full Text PDF

Despite the immense ongoing efforts to map brain functional connections and organizations with resting-state functional MRI (rsfMRI), the mechanisms governing the temporally coherent rsfMRI signals remain unclear. In particular, there is a lack of direct evidence regarding the morphological foundation and plasticity of these rsfMRI derived connections. In this study, we investigated the role of axonal projections in rsfMRI connectivity and its plasticity.

View Article and Find Full Text PDF

Objective: Interaural level difference (ILD) is the difference in sound pressure level (SPL) between the two ears and is one of the key physical cues used by the auditory system in sound localization. Our current understanding of ILD encoding has come primarily from invasive studies of individual structures, which have implicated subcortical structures such as the cochlear nucleus (CN), superior olivary complex (SOC), lateral lemniscus (LL), and inferior colliculus (IC). Noninvasive brain imaging enables studying ILD processing in multiple structures simultaneously.

View Article and Find Full Text PDF

Intensity is an important physical property of a sound wave and is customarily reported as sound pressure level (SPL). Invasive techniques such as electrical recordings, which typically examine one brain region at a time, have been used to study neuronal encoding of SPL throughout the central auditory system. Non-invasive functional magnetic resonance imaging (fMRI) with large field of view can simultaneously examine multiple auditory structures.

View Article and Find Full Text PDF

Rodents share general anatomical, physiological and behavioral features in the central auditory system with humans. In this study, monaural broadband noise and pure tone sounds are presented to normal rats and the resulting hemodynamic responses are measured with blood oxygenation level-dependent (BOLD) fMRI using a standard spin-echo echo planar imaging sequence (without sparse temporal sampling). The cochlear nucleus (CN), superior olivary complex, lateral lemniscus, inferior colliculus (IC), medial geniculate body and primary auditory cortex, all major auditory structures, are activated by broadband stimulation.

View Article and Find Full Text PDF

This study explored the feasibility of high-resolution Mn-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) for in vivo assessments of the development and reorganization of retinal and visual callosal pathways in normal neonatal rodent brains and after early postnatal visual impairments. Using MEMRI, intravitreal Mn(2+) injection into one eye resulted in maximal T1-weighted hyperintensity in neonatal contralateral superior colliculus (SC) 8 hours after administration, whereas in adult contralateral SC signal increase continued at 1 day post-injection. Notably, mild but significant Mn(2+) enhancement was observed in the ipsilateral SC in normal neonatal rats, and in adult rats after neonatal monocular enucleation (ME) but not in normal adult rats.

View Article and Find Full Text PDF

The rodents are an excellent model for understanding the development and plasticity of the visual system. In this study, we explored the feasibility of Mn-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) at 7 T for in vivo and longitudinal assessments of the retinal and callosal pathways in normal neonatal rodent brains and after early postnatal visual impairments. Along the retinal pathways, unilateral intravitreal Mn2+ injection resulted in Mn2+ uptake and transport in normal neonatal visual brains at postnatal days (P) 1, 5 and 10 with faster Mn2+ clearance than the adult brains at P60.

View Article and Find Full Text PDF