Publications by authors named "Joe O'Connell"

Microsatellite instability (MSI) is an alternative pathway of colorectal carcinogenesis. It is found in 10% to 15% of sporadic colorectal neoplasms and is characterized by failure of the DNA mismatch-repair system. High-level MSI (MSI-H) is associated with tumor-infiltrating lymphocytes (TILs) and a favorable prognosis.

View Article and Find Full Text PDF

Background: During carcinogenesis, tumors develop multiple mechanisms for evading the immune response, including upregulation of Fas ligand (FasL/CD95L) expression. Expression of FasL may help to maintain tumor cells in a state of immune privilege by inducing apoptosis of anti-tumor immune effector cells. Recently this idea has been challenged by studies reporting that tumor cells of varying origin do not express FasL.

View Article and Find Full Text PDF

The study of the role of Fas ligand (FasL/CD95L) in tumor immune evasion has been complicated by the discovery that FasL may trigger cytokine secretion and induce inflammation. Antisense suppression of FasL expression by colon tumor cells was used to investigate if a reduction in endogenously expressed FasL in tumors resulted in reduced tumor development and improved anti-tumor immune challenge in vivo. Downregulation of FasL expression had no effect on tumor growth in vitro but significantly reduced tumor development in syngeneic immune-competent mice in vivo.

View Article and Find Full Text PDF

Fas ligand (FasL/CD95L) is a transmembrane protein belonging to the tumor necrosis factor superfamily that can trigger apoptotic cell death following ligation to its receptor, Fas (CD95/APO-1). Expression of FasL may help to maintain tumor cells in a state of immune privilege by inducing apoptosis of antitumor immune effector cells-the "Fas counterattack." However, the ability of FasL to mediate tumor immune privilege is controversial due to studies that indicate FasL has both pro- and anti-inflammatory activities.

View Article and Find Full Text PDF

Fas is a transmembrane receptor that can induce apoptosis after cross-linking with either agonistic antibodies or with Fas ligand (FasL). Although originally described as an important regulator of peripheral immune homeostasis, accumulating evidence suggests that the Fas/FasL system plays an important role in tumour development. In addition to its proapoptotic functions, accumulating evidence demonstrates that Fas can activate numerous nonapoptotic signalling pathways, and that activation of these pathways can result in increased tumourigenicity and metastasis.

View Article and Find Full Text PDF

Objectives: We previously reported the use of laser capture microdissection (LCM) and PCR to detect the presence of Mycobacterium paratuberculosis DNA in granulomas of patients with Crohn's disease. While this does not imply a cause-effect relationship, it may influence the disease process because bacterial DNA has immunomodulatory effects. The aim of this study was to determine whether DNA from nonmycobacterial commensals, such as Escherichia coli, is also increased in the granulomas of Crohn's disease.

View Article and Find Full Text PDF

Tumor cells frequently exhibit de novo expression of Fas ligand (FasL/CD95L). Coupled with resistance to Fas-mediated apoptosis, FasL expression enables many cancers to deliver a pre-emptive strike or 'counterattack' against the immune system. New studies also indicate that FasL expression on tumor cells could confer a double advantage to these cells by stimulating their own proliferation.

View Article and Find Full Text PDF

Expression of Fas ligand (FasL/CD95L) may help to maintain colon cancers in a state of immune privilege by inducing apoptosis of antitumor immune effector cells. Colon tumor-derived cell lines appear to be relatively insensitive to apoptosis mediated by their own or exogenous FasL in vitro, despite expression of cell surface Fas. In our present study, we sought to investigate if FasL upregulated in human colon cancers leads to any increase in apoptosis of the tumor cells in vivo.

View Article and Find Full Text PDF

We have previously shown that the receptor for substance P (SP), neurokinin-1 receptor (NK-1R), is a marker of human mucosal but not peripheral mononuclear cells. In the present study, we investigate NK-1R expression in the human colonic mucosa in vivo, particularly in the epithelial cells. We investigate the influence of proinflammatory Th1 cytokines and SP on expression and function of NK-1R in colonic epithelial cells in vitro.

View Article and Find Full Text PDF

Increased expression of the type I insulin-like growth factor receptor (IGF-1R) is associated with colon cancer, while the antioxidant N-acetyl-l-cysteine (NAC) is known to suppress colonic proliferation. We demonstrate that NAC down-regulates the expression of IGF-1R on three colorectal adenocarcinoma cell lines (HT29, SW480, and LoVo). NAC also abrogates the proliferative effect of IGF-I on HT29 cells.

View Article and Find Full Text PDF

This paper aims to examine the contribution of all three of the MAP kinase signaling pathways to Fas-induced IL-8 up-regulation in HT29 colon epithelial cells.

View Article and Find Full Text PDF

ZhuH is a priming ketosynthase that initiates the elongation of the polyketide chain in the biosynthetic pathway of a type II polyketide, R1128. The crystal structure of ZhuH in complex with the priming substrate acetyl-CoA reveals an extensive loop region at the dimer interface that appears to affect the selectivity for the primer unit. Acetyl-CoA is bound in a 20 A-long channel, which placed the acetyl group against the catalytic triad.

View Article and Find Full Text PDF