Publications by authors named "Joe McNorton"

The recent rise in atmospheric methane (CH ) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH source, estimates of global wetland CH emissions vary widely among approaches taken by bottom-up (BU) process-based biogeochemical models and top-down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi-model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH emission estimates and model performance.

View Article and Find Full Text PDF

The CO Human Emissions project has generated realistic high-resolution 9 km global simulations for atmospheric carbon tracers referred to as nature runs to foster carbon-cycle research applications with current and planned satellite missions, as well as the surge of in situ observations. Realistic atmospheric CO, CH and CO fields can provide a reference for assessing the impact of proposed designs of new satellites and in situ networks and to study atmospheric variability of the tracers modulated by the weather. The simulations spanning 2015 are based on the Copernicus Atmosphere Monitoring Service forecasts at the European Centre for Medium Range Weather Forecasts, with improvements in various model components and input data such as anthropogenic emissions, in preparation of a CO Monitoring and Verification Support system.

View Article and Find Full Text PDF

The ongoing development of the Global Carbon Project (GCP) global methane (CH ) budget shows a continuation of increasing CH emissions and CH accumulation in the atmosphere during 2000-2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH emission estimates demonstrates robust temporal trends with CH emissions increasing in 16 of the 19 regions.

View Article and Find Full Text PDF