Background: The results of high-throughput biology ('omic') experiments provide insight into biological mechanisms but can be challenging to explore, archive and share. The scale of these challenges continues to grow as omic research volume expands and multiple analytical technologies, bioinformatic pipelines, and visualization preferences have emerged. Multiple software applications exist that support omic study exploration and/or archival.
View Article and Find Full Text PDFPlacental malaria (PM) is characterized by infected erythrocytes (IEs) that selectively bind to chondroitin sulfate A (CSA) and sequester in placental tissue. Variant surface antigen 2-CSA (VAR2CSA), a Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) protein family member, is expressed on the surface of placental IEs and mediates adherence to CSA on the surface of syncytiotrophoblasts. This transmembrane protein contains 6 Duffy binding-like (DBL) domains which might contribute to the specific adhesive properties of IEs.
View Article and Find Full Text PDFBackground: A prostate cancer (PCa) biomarker with improved specificity relative to PSA is a public health priority. Hypermethylated DNA can be detected in body fluids from PCa patients and may be a useful biomarker, although clinical performance varies between studies. We investigated the performance of candidate PCa DNA methylation biomarkers identified through a genome-wide search.
View Article and Find Full Text PDFBackground & Aims: The identification of novel genetic and epigenetic markers indicative of changes in the pathogenesis of colon cancer, along with easier-to-use, more sensitive assay methods, may improve the detection, treatment, and overall prognosis of this malignancy.
Methods: Using methylation-specific arbitrarily primed polymerase chain reaction, a fragment of the Aristaless-like homeobox-4 (ALX4) gene that was highly methylated in colon adenomas and cancer was identified. Methylation of ALX4 was analyzed in colorectal adenomas and cancers, in the liver metastases of patients with colorectal cancer, and in 61 other neoplasias, including gastric, esophageal, and hepatocellular cancer and cholangiocarcinoma.
The role of promoter methylation in the process of cancer cell metastasis has, however, not yet been studied. Recently, methylation of the TPEF (transmembrane protein containing epidermal growth factor and follistatin domain) gene was reported in human colon, gastric, and bladder cancer cells. Using the Methylight assay, TPEF/HPP1 gene methylation was assessed in primary colorectal cancers (n = 47), matched normal colon mucosa, as well as in the liver metastasis of 24 patients with colorectal cancer, and compared to the methylation status of the TIMP-3, APC, DAPK, caveolin-2, and p16 genes.
View Article and Find Full Text PDF