Updates of SARS-CoV-2 vaccines are required to generate immunity in the population against constantly evolving SARS-CoV-2 variants of concerns (VOCs). Here we describe three novel in-silico designed spike-based antigens capable of inducing neutralising antibodies across a spectrum of SARS-CoV-2 VOCs. Three sets of antigens utilising pre-Delta (T2_32), and post-Gamma sequence data (T2_35 and T2_36) were designed.
View Article and Find Full Text PDFViral glycoproteins drive membrane fusion in enveloped viruses and determine host range, tissue tropism and pathogenesis. Despite their importance, there is a fragmentary understanding of glycoproteins within the Flaviviridae, a large virus family that include pathogens such as hepatitis C, dengue and Zika viruses, and numerous other human, animal and emergent viruses. For many flaviviruses the glycoproteins have not yet been identified, for others, such as the hepaciviruses, the molecular mechanisms of membrane fusion remain uncharacterized.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2024
It is commonly held that there is a fundamental relationship between genome size and error rate, manifest as a notional "error threshold" that sets an upper limit on genome sizes. The genome sizes of RNA viruses, which have intrinsically high mutation rates due to a lack of mechanisms for error correction, must therefore be small to avoid accumulating an excessive number of deleterious mutations that will ultimately lead to population extinction. The proposed exceptions to this evolutionary rule are RNA viruses from the order (such as coronaviruses) that encode error-correcting exonucleases, enabling them to reach genome lengths greater than 40 kb.
View Article and Find Full Text PDFViruses are vulnerable as they transmit between hosts, and we aimed to exploit this critical window. We found that the ubiquitous, safe, inexpensive and biodegradable small molecule propylene glycol (PG) has robust virucidal activity. Propylene glycol rapidly inactivates a broad range of viruses including influenza A, SARS-CoV-2 and rotavirus and reduces disease burden in mice when administered intranasally at concentrations commonly found in nasal sprays.
View Article and Find Full Text PDFEnveloped viruses encode specialised glycoproteins that mediate fusion of viral and host membranes. Discovery and understanding of the molecular mechanisms of fusion have been achieved through structural analyses of glycoproteins from many different viruses, and yet the fusion mechanisms of some viral genera remain unknown. We have employed systematic genome annotation and AlphaFold modelling to predict the structures of the E1E2 glycoproteins from 60 viral species in the Hepacivirus, Pegivirus, and Pestivirus genera.
View Article and Find Full Text PDFDue to increased and broadened screening efforts, the last decade has seen a rapid expansion in the number of viral species classified into the genus. Conserved genetic features of hepaciviruses suggest that they have undergone specific adaptation and have evolved to hijack similar host proteins for efficient propagation in the liver. Here, we developed pseudotyped viruses to elucidate the entry factors of GB virus B (GBV-B), the first hepacivirus described in an animal after hepatitis C virus (HCV).
View Article and Find Full Text PDFEntry of SARS-CoV-2 into human respiratory cells, mediated by the spike protein, is absolutely dependent on the cellular receptor ACE2 (angiotensin-converting enzyme-2). This makes ACE2 an attractive target for therapeutic intervention in COVID-19. In this issue, Zuo et al.
View Article and Find Full Text PDFCellular biology occurs through myriad interactions between diverse molecular components, many of which assemble in to specific complexes. Various techniques can provide a qualitative survey of which components are found in a given complex. However, quantitative analysis of the absolute number of molecules within a complex (known as stoichiometry) remains challenging.
View Article and Find Full Text PDFThe emergence of SARS-CoV-2 variants has exacerbated the COVID-19 global health crisis. Thus far, all variants carry mutations in the spike glycoprotein, which is a critical determinant of viral transmission being responsible for attachment, receptor engagement and membrane fusion, and an important target of immunity. Variants frequently bear truncations of flexible loops in the N-terminal domain (NTD) of spike; the functional importance of these modifications has remained poorly characterised.
View Article and Find Full Text PDFVaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.
View Article and Find Full Text PDFE1 and E2 (E1E2), the fusion proteins of Hepatitis C Virus (HCV), are unlike that of any other virus yet described, and the detailed molecular mechanisms of HCV entry/fusion remain unknown. Hypervariable region-1 (HVR-1) of E2 is a putative intrinsically disordered protein tail. Here, we demonstrate that HVR-1 has an autoinhibitory function that suppresses the activity of E1E2 on free virions; this is dependent on its conformational entropy.
View Article and Find Full Text PDFDetermining divergent metabolic requirements of T cells, and the viruses and tumours they fail to combat, could provide new therapeutic checkpoints. Inhibition of acyl-CoA:cholesterol acyltransferase (ACAT) has direct anti-carcinogenic activity. Here, we show that ACAT inhibition has antiviral activity against hepatitis B (HBV), as well as boosting protective anti-HBV and anti-hepatocellular carcinoma (HCC) T cells.
View Article and Find Full Text PDFThe recent emergence of SARS-CoV-2 variants with increased transmission, pathogenesis and immune resistance has jeopardised the global response to the COVID-19 pandemic. Determining the fundamental biology of viral variants and understanding their evolutionary trajectories will guide current mitigation measures, future genetic surveillance and vaccination strategies. Here we examine virus entry by the B.
View Article and Find Full Text PDFGreat strides have been made in understanding and treating hepatitis C virus (HCV) thanks to the development of various experimental systems including cell-culture-proficient HCV, the HCV pseudoparticle system and soluble envelope glycoproteins. The HCV pseudoparticle (HCVpp) system is a platform used extensively in studies of cell entry, screening of novel entry inhibitors, assessing the phenotypes of clinically observed E1 and E2 glycoproteins and, most pertinently, in characterizing neutralizing antibody breadth induced upon vaccination and natural infection in patients. Nonetheless, some patient-derived clones produce pseudoparticles that are either non-infectious or exhibit infectivity too low for meaningful phenotyping.
View Article and Find Full Text PDFCD81 plays a central role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the large extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol-sensing mechanism; however, its relevance for protein function is thus far unknown.
View Article and Find Full Text PDFThe glycoproteins of hepatitis C virus, E1E2, are unlike any other viral fusion machinery yet described, and are the current focus of immunogen design in HCV vaccine development; thus, making E1E2 both scientifically and medically important. We used pre-existing, but fragmentary, structures to model a complete ectodomain of the major glycoprotein E2 from three strains of HCV. We then performed molecular dynamic simulations to explore the conformational landscape of E2, revealing a number of important features.
View Article and Find Full Text PDFCD4 T cells play critical roles in directing immunity, both as T helper and as regulatory T (Treg) cells. Here, we demonstrate that hepatocytes can modulate T cell populations through engulfment of live CD4 lymphocytes. We term this phenomenon enclysis to reflect the specific enclosure of CD4 T cells in hepatocytes.
View Article and Find Full Text PDFThe mechanism by which hepatitis C virus (HCV) gains entry into cells is a complex one, involving a broad range of host proteins. Entry is a critical phase of the viral lifecycle, and a potential target for therapeutic or vaccine-mediated intervention. However, the mechanics of HCV entry remain poorly understood.
View Article and Find Full Text PDFViruses are a major threat to human health and economic well-being. In recent years Ebola, Zika, influenza, and chikungunya virus epidemics have raised awareness that infections can spread rapidly before vaccines or specific antagonists can be made available. Broad-spectrum antivirals are drugs with the potential to inhibit infection by viruses from different groups or families, which may be deployed during outbreaks when specific diagnostics, vaccines or directly acting antivirals are not available.
View Article and Find Full Text PDFMethods Mol Biol
June 2019
Super-resolution microscopy (SRM) can provide a window on the nanoscale events of virus replication. Here we describe a protocol for imaging hepatitis C virus-infected cells using localization SRM. We provide details on sample preparation, immunostaining, data collection, and super-resolution image reconstruction.
View Article and Find Full Text PDFTetraspanins are small transmembrane proteins, found in all higher eukaryotes, that compartmentalize cellular membranes through interactions with partner proteins. CD81 is a prototypical tetraspanin and contributes to numerous physiological and pathological processes, including acting as a critical entry receptor for hepatitis C virus (HCV). Antibody engagement of tetraspanins can induce a variety of effects, including actin cytoskeletal rearrangements, activation of MAPK-ERK signaling and cell migration.
View Article and Find Full Text PDF