Publications by authors named "Joe Gerald Jesu Raj"

As a cancer, Glioblastoma (GBM) is a highly lethal and difficult-to-treat. With the aim of improving therapies to GBM, we developed novel and target-specific theranostic nanoparticles (TNPs) that can be selectively cleaved by cathepsin B (Cat B) to release the potent toxin monomethyl auristatin E (MMAE). We synthesized TNPs composed of a ferumoxytol-based nanoparticle carrier and a peptide prodrug with a Cat-B-responsive linker and the tubulin inhibitor MMAE.

View Article and Find Full Text PDF

The purpose of our study was to investigate if vascular injury in immature epiphyses affects cartilage repair outcomes of matrix-associated stem cell implants (MASI). Porcine bone marrow mesenchymal stromal stem cells (BMSCs) suspended in a fibrin glue scaffold were implanted into 24 full-thickness cartilage defects (5 mm ø) of the bilateral distal femur of six Göttingen minipigs (n = 12 defects in 6 knee joints of 3 immature pigs; age 3.5-4 months; n = 12 defects in 6 knee joints of 3 mature control pigs; age, 21-28 months).

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) remains a largely incurable disease as current therapy fails to target the invasive nature of glioma growth in disease progression and recurrence. Here, we use the FDA-approved drug and small molecule Hippo inhibitor Verteporfin (VP) to target YAP-TEAD activity, known to mediate convergent aspects of tumor invasion/metastasis, and assess the drug's efficacy and survival benefit in GBM models.

Methods: Up to 8 low-passage patient-derived GBM cell lines with distinct genomic drivers, including 3 primary/recurrent pairs, were treated with VP or vehicle (VEH) to assess in vitro effects on proliferation, migration, invasion, YAP-TEAD activity, and transcriptomics.

View Article and Find Full Text PDF

Hyperthermia therapy (HT) of cancer is a well-known treatment approach. With the advent of new technologies, HT approaches are now important for the treatment of brain tumors. We review current clinical applications of HT in neuro-oncology and ongoing preclinical research aiming to advance HT approaches to clinical practice.

View Article and Find Full Text PDF

Recently, research efforts have been focused on developing near-infrared perturbable nanoparticles to sensitize photostimulable molecules for the production of reactive oxygen species. Research in this direction is looking to broaden the use of photodynamic therapy, an indispensable clinical tool for cancer therapeutics, which relies on the photoexcitation of a suitable photosensitizer, to convert light into reactive oxygen species that are toxic to cells. To date most commercially available photosensitizers are excited with high energy light (UV or visible) presenting disadvantages that limit the clinical use of this technique to cancers that are on or near the surface of the skin.

View Article and Find Full Text PDF

Water-dispersible, optical hybrid nanoparticles are preferred materials for DNA biosensing due to their biocompatibility. Upconverting nanoparticles are highly desirable optical probes in sensors and bioimaging owing to their sharp emission intensity in the visible region. We herein report a highly sensitive ss-DNA detection based on an energy transfer system that uses a nanohybrid material synthesized by doping NaYF4:Tm(3+)/Yb(3+) upconverting nanoparticles (UCNPs) on silica coated polystyrene-co-acrylic acid (PSA) nanoparticles (PSA/SiO2) as the donor, and gold nanoparticles (AuNPs) decorated with Ir(III) complex as the acceptor.

View Article and Find Full Text PDF