Publications by authors named "Joe Fragala"

This paper presents a design optimization method based on theoretical analysis and numerical calculations, using a commercial multi-physics solver (e.g., ANSYS and ESI CFD-ACE+), for a 3D continuous model, to analyze the bending characteristics of an electrically heated bimorph microcantilever.

View Article and Find Full Text PDF

Bi-layer (Au-Si₃N₄) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e.

View Article and Find Full Text PDF

Scanning probe lithography (SPL) has witnessed a dramatic transformation with the advent of two-dimensional (2D) probe arrays. Although early work with single probes was justifiably assessed as being too slow to practically apply in a nanomanufacturing context, we have recently demonstrated throughputs up to 3x10(7) microm(2)/h--in some cases exceeding e-beam lithography--using centimeter square arrays of 55,000 tips tailored for Dip Pen Nanolithography (DPN). Parallelizing DPN has been critical because there exists a need for a lithographic process that is not only high throughput, but also high resolution (DPN has shown line widths down to 14 nm) with massive multiplexing capabilities.

View Article and Find Full Text PDF

Molecular patterning processes taking place in biological systems are challenging to study in vivo because of their dynamic behavior, subcellular size, and high degree of complexity. In vitro patterning of biomolecules using nanolithography allows simplification of the processes and detailed study of the dynamic interactions. Parallel dip-pen nanolithography (DPN) is uniquely capable of integrating functional biomolecules on subcellular length scales due to its constructive nature, high resolution, and high throughput.

View Article and Find Full Text PDF

Precision nanoscale deposition is a fundamental requirement for much of current nanoscience research and promises to facilitate exciting industrial applications. Tailoring chemical composition and surface structure on the sub-100 nm scale benefits researchers in topics ranging from catalysis, to biological recognition in nanoscale systems, to electronic connectivity on the nanoscale. Precision nanoscale deposition engenders applications such as additive photomask repair and nanodevice fabrication.

View Article and Find Full Text PDF