Publications by authors named "Joe Finney"

The electronic properties of moiré heterostructures depend sensitively on the relative orientation between layers of the stack. For example, near-magic-angle twisted bilayer graphene (TBG) commonly shows superconductivity, yet a TBG sample with one of the graphene layers rotationally aligned to a hexagonal Boron Nitride (hBN) cladding layer provided experimental observation of orbital ferromagnetism. To create samples with aligned graphene/hBN, researchers often align edges of exfoliated flakes that appear straight in optical micrographs.

View Article and Find Full Text PDF

In a stack of atomically thin van der Waals layers, introducing interlayer twist creates a moiré superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult; hence, determining that twist angle and mapping its spatial variation is very important.

View Article and Find Full Text PDF

Anisotropic hopping in a toy Hofstadter model was recently invoked to explain a rich and surprising Landau spectrum measured in twisted bilayer graphene away from the magic angle. Suspecting that such anisotropy could arise from unintended uniaxial strain, we extend the Bistritzer-MacDonald model to include uniaxial heterostrain and present a detailed analysis of its impact on band structure and magnetotransport. We find that such strain strongly influences band structure, shifting the three otherwise-degenerate van Hove points to different energies.

View Article and Find Full Text PDF

We present the design and implementation of a measurement system that enables parallel drive and detection of small currents and voltages at numerous electrical contacts to a multi-terminal electrical device. This system, which we term a feedback lock-in, combines digital control-loop feedback with software-defined lock-in measurements to dynamically source currents and measure small, pre-amplified potentials. The effective input impedance of each current/voltage probe can be set via software, permitting any given contact to behave as an open-circuit voltage lead or as a virtually grounded current source/sink.

View Article and Find Full Text PDF

SignificanceWhen two sheets of graphene are twisted to the magic angle of 1.1, the resulting flat moiré bands can host exotic correlated electronic states such as superconductivity and ferromagnetism. Here, we show transport properties of a twisted bilayer graphene device at 1.

View Article and Find Full Text PDF

We have previously reported ferromagnetism evinced by a large hysteretic anomalous Hall effect in twisted bilayer graphene (tBLG). Subsequent measurements of a quantized Hall resistance and small longitudinal resistance confirmed that this magnetic state is a Chern insulator. Here, we report that when tilting the sample in an external magnetic field, the ferromagnetism is highly anisotropic.

View Article and Find Full Text PDF

When two sheets of graphene are stacked at a small twist angle, the resulting flat superlattice minibands are expected to strongly enhance electron-electron interactions. Here, we present evidence that near three-quarters ([Formula: see text]) filling of the conduction miniband, these enhanced interactions drive the twisted bilayer graphene into a ferromagnetic state. In a narrow density range around an apparent insulating state at [Formula: see text], we observe emergent ferromagnetic hysteresis, with a giant anomalous Hall (AH) effect as large as 10.

View Article and Find Full Text PDF