Publications by authors named "Joe E Springer"

JOURNAL/nrgr/04.03/01300535-202412000-00032/figure1/v/2024-04-08T165401Z/r/image-tiff For patients with chronic spinal cord injury, the conventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection, pressure sores, osteoporosis, and deep vein thrombosis. Surgery is rarely performed on spinal cord injury in the chronic phase, and few treatments have been proven effective in chronic spinal cord injury patients.

View Article and Find Full Text PDF

Accumulating evidence suggests that gut microbes modulate brain plasticity the bidirectional gut-brain axis and play a role in stroke rehabilitation. However, the microbial species alterations associated with stroke and their correlation with functional outcome measures following acute stroke remain unknown. Here we measure post-stroke gut dysbiosis and how it correlates with gut permeability and cognitive functions in 12 stroke participants, 18 controls with risk factors for stroke, and 12 controls without risk factors.

View Article and Find Full Text PDF
Article Synopsis
  • Sex is important in understanding traumatic brain injury (TBI), especially regarding how biological differences between genders influence neuroinflammatory responses.
  • The study found sex-specific changes in inflammatory microRNAs (miRNAs) in brain and bone marrow cells of mice after TBI, particularly showing that levels of miR-223-3p were significantly increased in females compared to males after injury.
  • The research suggests that these miRNAs, especially miR-223-3p, could be crucial in understanding the different ways males and females respond to neuroinflammation after TBI.
View Article and Find Full Text PDF

Aneurysmal subarachnoid hemorrhage (aSAH) is a high mortality hemorrhagic stroke that affects nearly 30,000 patients annually in the United States. Approximately 30% of aSAH patients die during initial hospitalization and those who survive often carry poor prognosis with one in five having permanent physical and/or cognitive disabilities. The poor outcome of aSAH can be the result of the initial catastrophic event or due to the many acute or delayed neurological complications, such as cerebral ischemia, hydrocephalus, and re-bleeding.

View Article and Find Full Text PDF

Approximately one-third of aneurysmal subarachnoid hemorrhage (aSAH) patients develop delayed cerebral vasospasm (DCV) 3-10 days after aneurysm rupture resulting in additional, permanent neurologic disability. Currently, no validated biomarker is available to determine the risk of DCV in aSAH patients. MicroRNAs (miRNAs) have been implicated in virtually all human diseases, including aSAH, and are found in extracellular biofluids including plasma and cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate post-transcriptional gene expression and contribute to all aspects of cellular function. We previously reported that the activities of several mitochondria-enriched miRNAs regulating inflammation (i.e.

View Article and Find Full Text PDF

The mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are specific ER domains that contact the mitochondria and function to facilitate communication between ER and mitochondria. Disruption of contact between the mitochondria and ER is associated with a variety of pathophysiological conditions including neurodegenerative diseases. Considering the many cellular functions of MAMs, we hypothesized that MAMs play an important role in regulating microRNA (miRNA) activity linked to its unique location between mitochondria and ER.

View Article and Find Full Text PDF

Eukaryotic cell organelles exert unique functions individually but also interact with each other for essential cellular functions. This physical interface between the organelles serves as an important platform for biomolecule trafficking and signaling. Mitochondria are membrane-bound organelles and form a dynamic contact with other organelles.

View Article and Find Full Text PDF

Antibiotics are the front-line treatment against many bacterial infectious diseases in human. The excessive and long-term use of antibiotics in human cause several side effects. It is important to understand the underlying molecular mechanisms of action of antibiotics in the host cell to avoid the side effects due to the prevalent uses.

View Article and Find Full Text PDF

While mitochondria maintain essential cellular functions, such as energy production, calcium homeostasis, and regulating programmed cellular death, they also play a major role in pathophysiology of many neurological disorders. Furthermore, several neurodegenerative diseases are closely linked with synaptic damage and synaptic mitochondrial dysfunction. Unfortunately, the ability to assess mitochondrial dysfunction and the efficacy of mitochondrial-targeted therapies in experimental models of neurodegenerative disease and CNS injury is limited by current mitochondrial isolation techniques.

View Article and Find Full Text PDF

The mitochondrion serves many functions in the central nervous system (CNS) and other organs beyond the well-recognized role of adenosine triphosphate (ATP) production. This includes calcium-dependent cell signaling, regulation of gene expression, synthesis and release of cytotoxic reactive oxygen species, and the release of cytochrome c and other apoptotic cell death factors. Traumatic injury to the CNS results in a rapid and, in some cases, sustained loss of mitochondrial function.

View Article and Find Full Text PDF

Objective: The aim of the study was to compare functional outcomes of acute inpatient rehabilitation for spinal epidural abscess patients with and without history of intravenous substance abuse.

Design: This is a retrospective case series study in freestanding rehabilitation hospital.

Methods: Charts of 28 spinal epidural abscess patients admitted from January 2012 to September 2015: 13 with intravenous substance abuse and 15 without intravenous substance abuse were reviewed.

View Article and Find Full Text PDF

Mitochondrial homeostasis is essential for maintaining cellular function and survival in the central nervous system (CNS). Mitochondrial function is significantly compromised after spinal cord injury (SCI) and is associated with accumulation of high levels of calcium, increased production of free radicals, oxidative damage, and eventually mitochondrial permeability transition (mPT). The formation of the mPT pore (mPTP) and subsequent mPT state are considered to be end stage events in the decline of mitochondrial integrity, and strategies that inhibit mPT can limit mitochondrial demise.

View Article and Find Full Text PDF

Cerebellar function is critical for coordinating movement and motor learning. However, events occurring in the cerebellum following spinal cord injury (SCI) have not been investigated in detail. We provide evidence of SCI-induced cerebellar synaptic changes involving a loss of granule cell parallel fiber input to distal regions of the Purkinje cell dendritic tree.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of long-term impairments in higher cognitive functioning, including deficits in attention and memory. It is well known that some of these persistent deficits are related, in part, to ongoing secondary injury events characterized by pervasive biochemical and pathophysiological stressors, including a rapid and sustained phase of mitochondrial dysfunction. A loss of mitochondrial function impacts a number of important cellular events and we have begun to investigate the novel hypothesis that mitochondria play a critical role in regulating the cellular activity of specific microRNAs in response to cellular demands and stressors.

View Article and Find Full Text PDF

Objectives: To investigate the incidence of spinal abscess and substance abuse in a tertiary care hospital after state legislation titled "House Bill 1" (HB1) mandated stricter regulation of prescription drugs of abuse in Kentucky in 2012.

Design: A retrospective case series study design was used to review the incidence of spinal abscess and drug abuse diagnoses admissions from 2010 to 2014. Variances in the incidence of spinal abscess and substance abuse were plotted across this time frame.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival.

View Article and Find Full Text PDF

In this experimental study, differential labeling with isobaric tags for relative and absolute quantitation (iTRAQ) reagents followed by liquid chromatography (LC) and tandem mass spectrometry (MS/MS) proteomic approach was used to investigate differences in the proteome of rat spinal cord at 24 h following a moderate contusion injury. Spinal cord protein samples from the injury epicenter (or from sham controls) were trypsinized and differentially labeled with iTRAQ isotopic reagents. The differentially labeled samples were then combined into one sample mixture, separated by LC, and analyzed using MS/MS.

View Article and Find Full Text PDF

Neu2000 [2-hydroxy-5-(2,3,5,6-tetrafluoro-4 trifluoromethylbenzylamino) benzoic acid] is a dual-acting neuroprotective agent that functions both as a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist and a free radical scavenger. In the present study, we investigated the scavenging activity of Neu2000 on various classes of reactive oxygen species and reactive nitrogen species (ROS/RNS) as well as its efficacy for reducing free radicals and oxidative stress/damage induced in spinal cord mitochondrial preparations. Neu2000 exerted scavenging activity against superoxide, nitric oxide, and hydroxyl radicals, and efficiently scavenged peroxynitrite.

View Article and Find Full Text PDF

While free radicals and inflammation constitute major routes of neuronal injury occurring in amyotrophic lateral sclerosis (ALS), neither antioxidants nor non-steroidal anti-inflammatory drugs have shown significant efficacy in human clinical trials. We examined the possibility that concurrent blockade of free radicals and prostaglandin E(2) (PGE(2))-mediated inflammation might constitute a safe and effective therapeutic approach to ALS. We have developed 2-hydroxy-5-[2-(4-trifluoromethylphenyl)-ethylaminobenzoic acid] (AAD-2004) as a derivative of aspirin.

View Article and Find Full Text PDF

Despite numerous studies reporting some measures of efficacy in the animal literature, there are currently no effective therapies for the treatment of traumatic spinal cord injuries (SCI) in humans. The purpose of this review is to delineate key pathophysiological processes that contribute to neurological deficits after SCI, as well as to describe examples of pharmacological approaches that are currently being tested in clinical trials, or nearing clinical translation, for the therapeutic management of SCI. In particular, we will describe the mechanistic rationale to promote neuroprotection and/or functional recovery based on theoretical, yet targeted pathological events.

View Article and Find Full Text PDF

Traumatic injury to the mammalian spinal cord is a highly dynamic process characterized by a complex pattern of pervasive and destructive biochemical and pathophysiological events that limit the potential for functional recovery. Currently, there are no effective therapies for the treatment of spinal cord injury (SCI) and this is due, in part, to the widespread impact of the secondary injury cascades, including edema, ischemia, excitotoxicity, inflammation, oxidative damage, and activation of necrotic and apoptotic cell death signaling events. In addition, many of the signaling pathways associated with these cascades intersect and initiate other secondary injury events.

View Article and Find Full Text PDF
Article Synopsis
  • Abnormal brain iron levels can lead to oxidative stress and neuronal damage, particularly in the hippocampal CA1 area after a temporary lack of blood flow (transient forebrain ischemia, TFI).
  • Treatment with specific molecules, like Neu2000 and trolox, can reduce free radical production and protect neurons from delayed death, even when given up to 24 hours after reperfusion.
  • The study suggests that excess iron from the bloodstream contributes to long-lasting oxidative stress and neuronal death, indicating that managing iron levels could be a potential therapeutic strategy for protecting the brain after ischemic events.
View Article and Find Full Text PDF