Objective: To determine the molecular basis of a severe neurologic disorder in a large consanguineous family with complete agenesis of the corpus callosum (ACC), pontocerebellar hypoplasia (PCH), and peripheral axonal neuropathy.
Methods: Assessment included clinical evaluation, neuroimaging, and nerve conduction studies (NCSs). Linkage analysis used genotypes from 7 family members, and the exome of 3 affected siblings was sequenced.
Intractable Rare Dis Res
February 2015
Mutations in the gene encoding AT-rich interactive domain-containing protein 1B (ARID1B) were recently associated with multiple syndromes characterized by developmental delay and intellectual disability, in addition to nonsyndromic intellectual disability. While the majority of ARID1B mutations identified to date are predicted to result in haploinsufficiency, the underlying pathogenic mechanisms have yet to be fully understood. ARID1B is a DNA-binding subunit of the Brahma-associated factor chromatin remodelling complexes, which play a key role in the regulation of gene activity.
View Article and Find Full Text PDFAdvances in understanding the etiology of Parkinson disease have been driven by the identification of causative mutations in families. Genetic analysis of an Australian family with three males displaying clinical features of early-onset parkinsonism and intellectual disability identified a ∼45 kb deletion resulting in the complete loss of RAB39B. We subsequently identified a missense mutation (c.
View Article and Find Full Text PDFAge-related degenerative and malignant diseases represent major challenges for health care systems. Elucidation of the molecular mechanisms underlying carcinogenesis and age-associated pathologies is thus of growing biomedical relevance. We identified biallelic germline mutations in SPRTN (also called C1orf124 or DVC1) in three patients from two unrelated families.
View Article and Find Full Text PDFBackground: Mutations in genes encoding components of the Brahma-associated factor (BAF) chromatin remodeling complex have recently been shown to contribute to multiple syndromes characterised by developmental delay and intellectual disability. ARID1B mutations have been identified as the predominant cause of Coffin-Siris syndrome and have also been shown to be a frequent cause of nonsyndromic intellectual disability. Here, we investigate the molecular basis of a patient with an overlapping but distinctive phenotype of intellectual disability, plantar fat pads and facial dysmorphism.
View Article and Find Full Text PDF