Publications by authors named "Joe A Tran"

The structure-activity relationships of 2-(piperidin-3-yl)-1H-benzimidazoles, 2-morpholine and 2-thiomorpholin-2-yl-1H-benzimidazoles are described. In the lead optimization process, the pK(a) and/or logP of benzimidazole analogs were reduced either by attachment of polar substituents to the piperidine nitrogen or incorporation of heteroatoms into the piperidine heterocycle. Compounds 9a and 9b in the morpholine series and 10g in the thiomorpholine series demonstrated improved selectivity and CNS profiles compared to lead compound 2 and these are potential candidates for evaluation as sedative hypnotics.

View Article and Find Full Text PDF

Thien-2-yl 1S,2R-milnacipran analogues were synthesized and characterized as norepinephrine/serotonin transporter inhibitors. These compounds possessed higher potencies than 1S,2R-milnacipran (2R-1) while maintaining low molecular weight and moderate lipophilicity, which are the important features for the pharmacological and pharmacokinetic characteristics of milnacipran (1). Thus, compound 5c exhibited IC50 values of 2.

View Article and Find Full Text PDF

A series of piperazinebenzylalcohols were prepared and studied to compare with their ketone and amine analogs as MC4R antagonists. Several benzylalcohols such as 14a and 14g displayed low nanomolar binding affinities (K(i)<10 nM), and high selectivities over other melanocortin receptor subtypes.

View Article and Find Full Text PDF

Compounds with various activities and selectivities were discovered through structure-activity relationship studies of bicifadine analogs as monoamine transporter inhibitors. The norepinephrine-selective 2-thienyl compound S-6j was efficacious in a rodent pain model.

View Article and Find Full Text PDF

A series of milnacipran analogs were synthesized and studied as monoamine transporter inhibitors, and several potent compounds with moderate lipophilicity were identified from the 1S,2R-isomers. Thus, 15l exhibited IC(50) values of 1.7nM at NET and 25nM at SERT, which were, respectively, 20- and 13-fold more potent than 1S,2R-milnacipran 1-II.

View Article and Find Full Text PDF

A series of 2-piperazine-alpha-isopropylbenzylamine derivatives were synthesized and characterized as melanocortin-4 receptor (MC4R) antagonists. Attaching an amino acid to benzylamines 7 significantly increased their binding affinity, and the resulting compounds 8-12 bound selectively to MC4R over other melanocortin receptor subtypes and behaved as functional antagonists. These compounds were also studied for their permeability using Caco-2 cell monolayers and metabolic stability in human liver microsomes.

View Article and Find Full Text PDF

Based on 3-phenylpropionamides, a series of 3-arylpyrrolidine-2-carboxamide derivatives was designed and synthesized to study the effect of cyclizations as melanocortin-4 receptor ligands. It was found that the 2R,3R-pyrrolidine isomer possessed the most potent affinity among the four stereoisomers.

View Article and Find Full Text PDF

A series of piperazinephenethylamines were synthesized to study the contribution of a basic amine to binding affinity at the melanocortin-4 receptor. Several potent compounds from this series possessed subnanomolar K(i) values in a competition binding assay.

View Article and Find Full Text PDF

Piperazinebenzylamine derivatives from trans-4-(4-chlorophenyl)tetrahydrothiophene-3-carboxylic acid 6 and its S-oxide 7 and sulfone 8, and the tetrahydrofuran 9 and its two regioisomers 11 and 13 were synthesized and studied for their binding affinities at the human melanocortin-4 receptor. These five-membered ring constrained compounds possessed similar or lower potency compared to the acyclic analogs.

View Article and Find Full Text PDF

A series of trans-4-phenylpyrrolidine-3-carboxamides were synthesized and characterized as potent ligands of the human melanocortin-4 receptor. Interestingly, a pair of diastereoisomers 13b displayed potent functional agonist and antagonist activity, respectively. Thus, the 3S,4R-pyrrolidine 13b-1 possessed a Ki of 1.

View Article and Find Full Text PDF

Benzylamine and pyridinemethylamine derivatives were synthesized and characterized as potent and selective antagonists of the melanocortin-4 receptor (MC4R). These compounds were also profiled in rodents for their pharmacokinetic properties. Two compounds with diversified profiles in chemical structure, pharmacological activities, and pharmacokinetics, 10 and 12b, showed efficacy in an established murine cachexia model.

View Article and Find Full Text PDF

A series of trans-N-alkyl-4-(4-chlorophenyl)pyrrolidine-3-carboxamides of piperazinecyclohexanemethylamines was synthesized and characterized for binding and function at the melanocortin-4 receptor (MC4R), and several potent benzylamine derivatives were identified. Compound 18 v was found to bind MC4R with potent affinity (K(i)=0.5 nM) and high selectivity over the other melanocortin subtypes and behaved as a functional antagonist (IC(50)=48 nM).

View Article and Find Full Text PDF

A series of trans-4-phenylpyrrolidine-3-carboxamides were synthesized and characterized as potent ligands of the human melanocortin-4 receptor. Interestingly, a pair of diastereoisomers 20f-1 and 20f-2 displayed potent functional agonist and antagonist activity, respectively. Thus, the 3S,4R-compound 20f-1 possessed a K(i) of 11nM and an EC(50) of 24nM, while its 3R,4S-isomer 20f-2 exhibited a K(i) of 8.

View Article and Find Full Text PDF

A potent and selective antagonist of the melanocortin-4 receptor, 1-[2-[(1S)-(3-dimethylaminopropionyl)amino-2-methylpropyl]-6-methylphenyl]-4-[(2R)-methyl-3-(4-chlorophenyl)propionyl]piperazine (10d), was identified from a series piperazinebenzylamine attached with a N,N-dimethyl-beta-alanine side chain. This compound possessed high water solubility and exhibited good metabolic profiles. In animals, 10d showed moderate to good oral bioavailability and promoted food intake in tumor-bearing mice after oral administration.

View Article and Find Full Text PDF

A series of pyrrolidinones derived from phenylalaninepiperazines were synthesized and characterized as potent and selective antagonists of the melanocortin-4 receptor. In addition to their high binding affinities, these compounds displayed high functional potencies. 12a had a K(i) of 0.

View Article and Find Full Text PDF

A series of pyrrolidine derivatives were synthesized and characterized as potent agonists of the human melanocortin-4 receptor. For example, 28c had a K(i) of 13 nM in binding affinity and EC(50) of 6.9 nM in agonist potency with an intrinsic activity of 100% of the endogenous ligand alpha-MSH.

View Article and Find Full Text PDF

A series of pyrrolidinones derived from phenylalanines were synthesized as potent antagonists of the human melanocortin-4 receptor. These compounds showed high potencies and selectivities, and several of them had good oral bioavailabilities. In addition, 12e demonstrated in vivo efficacy in a murine cachexia model.

View Article and Find Full Text PDF

A series of alpha-benzylpropionylpiperazines were synthesized and tested as antagonists of the melanocortin-4 receptor. In addition to its high potency and selectivity, R-11a had desirable pharmacokinetic properties including high brain penetration in mice.

View Article and Find Full Text PDF

A series of 3-arylpropionylpiperazines were synthesized as antagonists of the melanocortin-4 receptor. Their potency was found to be increased by replacing the alpha-methyl substituent of the initial lead 11 with a larger s-Bu or i-Bu group. Further potency enhancement was observed when a glycine or beta-alanine was incorporated onto the benzylamine.

View Article and Find Full Text PDF

A series of 2-pyridinylpiperazines derived from beta-Ala-(2,4-Cl)Phe dipeptide was synthesized for the study of their SARs and possible interactions with the MC4 receptor. Compounds such as 11k (Ki=6.5 nM) possessed high potency.

View Article and Find Full Text PDF

[reaction: see text] 2-[4-(tert-Butoxycarbonyl)piperazinyl]benzylidene-tert-butanesulfinamides underwent nucleophilic 1,2-addition with different organometallic reagents to give highly diastereomerically enriched adducts. X-ray crystallography of the resulting alpha-branched N-Boc-2-piperazinylbenzyl-tert-butanesulfinamides confirms different mechanisms depending on the organometallic reagent used. Differential deprotection of the N-Boc and the tert-butanesulfinamides was investigated, and the dehydration byproducts have been identified and characterized.

View Article and Find Full Text PDF

Synthesis and structure-activity relationship studies of a series of cyclohexylpiperazines bearing an amide side chain as ligands of the MC4 receptor are discussed. Compounds such as 11i from this series are potent agonists (EC(50)=33nM, IA=96%).

View Article and Find Full Text PDF

Piperazinebenzylamines bearing a small N-(1-methoxy-2-propyl) side chain were found to be potent and selective antagonists of the human melanocortin-4 (MC4) receptor. Compound 7b, having K(i) values of 6.9 and 2800 nM at the human MC4 and MC3 receptors, respectively, has moderate oral bioavailability in mice, which is improved relative to the arylethyl analogues.

View Article and Find Full Text PDF

The melanocortin-4 receptor (MC4R) plays an important role in the regulation of energy homeostasis. Recent studies have shown that blockade of the MC4R reverses tumor-induced weight loss in mice. Herein, we describe the synthesis and identification of potent and selective non-peptide antagonists of the human MC4R from a series of 2-ethoxycarbonylcyclohexyl-piperazines.

View Article and Find Full Text PDF

SAR studies of a series of piperazinebenzylamines resulted in identification of potent agonists and antagonists of the human melanocortin-4 receptor. Thus, the 1,2,3,4-tetrahydroisoquinolin-1-ylacetyl compound 12e and the quinolin-3-ylcarbonyl analogue 12l possessed K(i) values of 6.3 and 4.

View Article and Find Full Text PDF