Cryopeg brines are isolated volumes of hypersaline water in subzero permafrost. The cryopeg system at Utqiaġvik, Alaska, is estimated to date back to 40 ka BP or earlier, a remnant of a late Pleistocene Ocean. Surprisingly, the cryopeg brines contain high concentrations of organic carbon, including extracellular polysaccharides, and high densities of bacteria.
View Article and Find Full Text PDFBackground: Climate change threatens Earth's ice-based ecosystems which currently offer archives and eco-evolutionary experiments in the extreme. Arctic cryopeg brine (marine-derived, within permafrost) and sea ice brine, similar in subzero temperature and high salinity but different in temporal stability, are inhabited by microbes adapted to these extreme conditions. However, little is known about their viruses (community composition, diversity, interaction with hosts, or evolution) or how they might respond to geologically stable cryopeg versus fluctuating sea ice conditions.
View Article and Find Full Text PDFspp. are cosmopolitan in saline environments, displaying a diverse set of metabolisms that allow them to competitively occupy these environments, some of which can be extreme in both salinity and temperature. Here, we introduce a distinct cluster of genomes, composed of novel isolates and assembled genomes obtained from subzero, hypersaline cryopeg brines, relic seawater-derived liquid habitats within permafrost sampled near Utqiaġvik, Alaska.
View Article and Find Full Text PDFSubzero hypersaline brines are liquid microbial habitats within otherwise frozen environments, where concentrated dissolved salts prevent freezing. Such extreme conditions presumably require unique microbial adaptations, and possibly altered ecologies, but specific strategies remain largely unknown. Here we examined prokaryotic taxonomic and functional diversity in two seawater-derived subzero hypersaline brines: first-year sea ice, subject to seasonally fluctuating conditions; and ancient cryopeg, under relatively stable conditions geophysically isolated in permafrost.
View Article and Find Full Text PDFHypersaline aqueous environments at subzero temperatures are known to be inhabited by microorganisms, yet information on community structure in subzero brines is very limited. Near Utqiaġvik, Alaska, we sampled subzero brines (-6°C, 115-140 ppt) from cryopegs, i.e.
View Article and Find Full Text PDFSea ice and its snow cover are critical for global processes including climate regulation and biogeochemical cycles. Despite an increase in studies focused on snow microorganisms, the ecology of snow inhabitants remains unclear. In this study, we investigated sources and selection of a snowpack-specific microbial community by comparing metagenomes from samples collected in a Greenlandic fjord within a vertical profile including atmosphere, snowpack with four distinct layers of snow, sea ice brine and seawater.
View Article and Find Full Text PDFWide salinity ranges experienced during the seasonal freeze and melt of sea ice likely constrain many biological processes. Microorganisms generally protect against fluctuating salinities through the uptake, production, and release of compatible solutes. Little is known, however, about the use or fate of glycine betaine (GBT hereafter), one of the most common compatible solutes, in sea-ice diatoms confronted with shifts in salinity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
34H is a model psychrophilic bacterium found in the cold ocean-polar sediments, sea ice, and the deep sea. Although the genomes of such psychrophiles have been sequenced, their metabolic strategies at low temperature have not been quantified. We measured the metabolic fluxes and gene expression of 34H at 4 °C (the mean global-ocean temperature and a normal-growth temperature for 34H), making comparative analyses at room temperature (above its upper-growth temperature of 18 °C) and with mesophilic When grown at 4 °C, 34H utilized multiple carbon substrates without catabolite repression or overflow byproducts; its anaplerotic pathways increased flux network flexibility and enabled CO fixation.
View Article and Find Full Text PDFMeaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context.
View Article and Find Full Text PDFSea ice is an analog environment for several of astrobiology's near-term targets: Mars, Europa, Enceladus, and perhaps other Jovian or Saturnian moons. Microorganisms, both eukaryotic and prokaryotic, remain active within brine channels inside the ice, making it unnecessary to penetrate through to liquid water below in order to detect life. We have developed a submersible digital holographic microscope (DHM) that is capable of resolving individual bacterial cells, and demonstrated its utility for immediately imaging samples taken directly from sea ice at several locations near Nuuk, Greenland.
View Article and Find Full Text PDFThe Earth's cryosphere comprises those regions that are cold enough for water to turn into ice. Recent findings show that the icy realms of polar oceans, glaciers and ice sheets are inhabited by microorganisms of all three domains of life, and that temperatures below 0 °C are an integral force in the diversification of microbial life. Cold-adapted microorganisms maintain key ecological functions in icy habitats: where sunlight penetrates the ice, photoautotrophy is the basis for complex food webs, whereas in dark subglacial habitats, chemoautotrophy reigns.
View Article and Find Full Text PDFThe low temperatures of polar regions and high-altitude environments, especially icy habitats, present challenges for many microorganisms. Their ability to live under subfreezing conditions implies the production of compounds conferring cryotolerance. Colwellia psychrerythraea 34H, a γ-proteobacterium isolated from subzero Arctic marine sediments, provides a model for the study of life in cold environments.
View Article and Find Full Text PDFBackground: Psychrophiles are presumed to play a large role in the catabolism of alkanes and other components of crude oil in natural low temperature environments. In this study we analyzed the functional diversity of genes for alkane hydroxylases, the enzymes responsible for converting alkanes to more labile alcohols, as found in the genomes of nineteen psychrophiles for which alkane degradation has not been reported. To identify possible mechanisms of low temperature optimization we compared putative alkane hydroxylases from these psychrophiles with homologues from nineteen taxonomically related mesophilic strains.
View Article and Find Full Text PDFWintertime measurements near Barrow, Alaska, showed that bacteria near the surface of first-year sea ice and in overlying saline snow experience more extreme temperatures and salinities, and wider fluctuations in both parameters, than bacteria deeper in the ice. To examine impacts of such conditions on bacterial survival, two Arctic isolates with different environmental tolerances were subjected to winter-freezing conditions, with and without the presence of organic solutes involved in osmoprotection: proline, choline, or glycine betaine. Obligate psychrophile Colwellia psychrerythraea strain 34H suffered cell losses under all treatments, with maximal loss after 15-day exposure to temperatures fluctuating between -7 and -25 °C.
View Article and Find Full Text PDFNewly formed sea ice is a vast and biogeochemically active environment. Recently, we reported an unusual microbial community dominated by members of the Rhizobiales in frost flowers at the surface of Arctic young sea ice based on the presence of 16S gene sequences related to these strains. Here, we use metagenomic analysis of two samples, from a field of frost flowers and the underlying young sea ice, to explore the metabolic potential of this surface ice community.
View Article and Find Full Text PDFMicrobial enzymatic hydrolysis of marine-derived particulate organic carbon (POC) can be a dominant mechanism for attenuating carbon flux in cold Arctic waters during spring and summer. Whether this mechanism depends on composition of associated microbial communities and extends into other seasons is not known. Bacterial community composition (BCC) and extracellular enzyme activity (EEA, for leucine aminopeptidases, glucosidases and chitobiases) were measured on small suspended particles and potentially sinking aggregates collected during fall from waters of the biologically productive North Water and river-impacted Beaufort Sea.
View Article and Find Full Text PDFColwellia is a genus of mostly psychrophilic halophilic Gammaproteobacteria frequently isolated from polar marine sediments and sea ice. In exploring the capacity of Colwellia psychrerythraea 34H to survive and grow in the liquid brines of sea ice, we detected a duplicated 37 kbp genomic island in its genome based on the abnormally high G + C content. This island contains an operon encoding for heterotetrameric sarcosine oxidase and is located adjacent to several genes used in the serial demethylation of glycine betaine, a compatible solute commonly used for osmoregulation, to dimethylglycine, sarcosine, and glycine.
View Article and Find Full Text PDFEffects of hydrostatic pressure on pure cultures of prokaryotes have been studied extensively but impacts at the community level in the ocean are less well defined. Here we consider hydrostatic pressure effects on natural communities containing both unadapted (piezosensitive) prokaryotes originating from surface water and adapted (including piezophilic) prokaryotes from the deep sea. Results from experiments mimicking pressure changes experienced by particle-associated prokaryotes during their descent through the water column show that rates of degradation of organic matter (OM) by surface-originating microorganisms decrease with sinking.
View Article and Find Full Text PDFBiology (Basel)
March 2013
Inherent to sea ice, like other high latitude environments, is the strong seasonality driven by changes in insolation throughout the year. Sea-ice organisms are exposed to shifting, sometimes limiting, conditions of temperature and salinity. An array of adaptations to survive these and other challenges has been acquired by those organisms that inhabit the ice.
View Article and Find Full Text PDFThe 104 kb genome of cold-active bacteriophage 9A, which replicates in the marine psychrophilic gamma-proteobacterium Colwellia psychrerythraea strain 34H (between -12 and 8 °C), was sequenced and analyzed to investigate elements of molecular adaptation to low temperature and phage-host interactions in the cold. Most characterized ORFs indicated closest similarity to gamma-proteobacteria and their phages, though no single module provided definitive phylogenetic grouping. A subset of primary structural features linked to psychrophily suggested that the majority of annotated phage proteins were not psychrophilic; those that were, primarily serve phage-specific functions and may also contribute to 9A's restricted temperature range for replication as compared to host.
View Article and Find Full Text PDFDramatic decreases in the extent of Arctic multiyear ice (MYI) suggest this environment may disappear as early as 2100, replaced by ecologically different first-year ice. To better understand the implications of this loss on microbial biodiversity, we undertook a detailed census of the microbial community in MYI at two sites near the geographic North Pole using parallel tag sequencing of the 16S rRNA gene. Although the composition of the MYI microbial community has been characterized by previous studies, microbial community structure has not been.
View Article and Find Full Text PDFThe physical properties of Arctic sea ice determine its habitability. Whether ice-dwelling organisms can change those properties has rarely been addressed. Following discovery that sea ice contains an abundance of gelatinous extracellular polymeric substances (EPS), we examined the effects of algal EPS on the microstructure and salt retention of ice grown from saline solutions containing EPS from a culture of the sea-ice diatom, Melosira arctica.
View Article and Find Full Text PDF