Agriculture can be a contributor of pollutants, including pesticides and excess sediment, to aquatic environments. However, side-inlet vegetated filter strips (VFSs), which are planted around the upstream side of culverts draining agricultural fields, may provide reductions in pesticide and sediment losses from agricultural fields, and have the additional benefit of removing less land from production than traditional VFS. In this study, reductions of runoff, the soluble pesticide acetochlor, and total suspended solids were estimated using a paired watershed field study and coupled PRZM/VFSMOD modeling for two treatment watersheds with source to buffer area ratios (SBAR) of 80:1 (SI-A) and 481:1 (SI-B).
View Article and Find Full Text PDFSpray drift buffers are often required on herbicide labels to prevent potential drift effects to nontarget plants. Buffers are typically derived by determining the distance at which predicted exposure from spray drift equals the ecotoxicology threshold for sensitive plant species determined in greenhouse tests. Field studies performed under realistic conditions have demonstrated, however, that this approach is far more conservative than necessary.
View Article and Find Full Text PDFThe estimation of pesticide concentrations in surface water bodies is a critical component of the environmental risk assessment process required by regulatory agencies in North America, the European Union, and elsewhere. Pesticide transport to surface waters via deposition from off-field spray drift can be an important route of potential contamination. The spatial orientation of treated fields relative to receiving water bodies make prediction of off-target pesticide spray drift deposition and resulting aquatic estimated environmental concentrations (EECs) challenging at the watershed scale.
View Article and Find Full Text PDFChanges in land use and climate are expected to alter the risk of malaria transmission in areas where rainfall limits vector abundance. We use a coupled hydrology-entomology model to investigate the effects of land use change on hydrological processes impacting mosquito abundance in a highland village of Ethiopia. Land use affects partitioning of rainfall into infiltration and runoff that reaches small-scale topographic depressions, which constitute the primary breeding habitat of Anopheles arabiensis mosquitoes.
View Article and Find Full Text PDF