Proc Natl Acad Sci U S A
July 2020
The Gulf Stream front separates the North Atlantic subtropical and subpolar ocean gyres, water masses with distinct physical and biogeochemical properties. Exchange across the front is believed to be necessary to balance the freshwater budget of the subtropical gyre and to support the biological productivity of the region; however, the physical mechanisms responsible have been the subject of long-standing debate. Here, the evolution of a passive dye released within the north wall of the Gulf Stream provides direct observational evidence of enhanced mixing across the Gulf Stream front.
View Article and Find Full Text PDFDiapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and dissipation of internal waves, which supply much of the power for turbulent mixing.
View Article and Find Full Text PDFFloating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change.
View Article and Find Full Text PDFInternal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects.
View Article and Find Full Text PDFAlthough the strongest ocean surface currents occur at horizontal scales of order 100 km, recent numerical simulations suggest that flows smaller than these mesoscale eddies can achieve important vertical transports in the upper ocean. These submesoscale flows, 1-100 km in horizontal extent, take heat and atmospheric gases down into the interior ocean, accelerating air-sea fluxes, and bring deep nutrients up into the sunlit surface layer, fueling primary production. Here we present observational evidence that submesoscale flows undergo a seasonal cycle in the surface mixed layer: they are much stronger in winter than in summer.
View Article and Find Full Text PDFThe cascade from tides to turbulence has been hypothesized to serve as a major energy pathway for ocean mixing. We investigated this cascade along the Hawaiian Ridge using observations and numerical models. A divergence of internal tidal energy flux observed at the ridge agrees with the predictions of internal tide models.
View Article and Find Full Text PDF